[074d3d]: / mne / io / edf / edf.py

Download this file

2040 lines (1800 with data), 78.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
"""Reading tools from EDF, EDF+, BDF, and GDF."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import re
from datetime import date, datetime, timedelta, timezone
from pathlib import Path
import numpy as np
from scipy.interpolate import interp1d
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _empty_info, _unique_channel_names
from ..._fiff.utils import _blk_read_lims, _mult_cal_one
from ...annotations import Annotations
from ...filter import resample
from ...utils import _validate_type, fill_doc, logger, verbose, warn
from ..base import BaseRaw, _get_scaling
# common channel type names mapped to internal ch types
CH_TYPE_MAPPING = {
"EEG": FIFF.FIFFV_EEG_CH,
"SEEG": FIFF.FIFFV_SEEG_CH,
"ECOG": FIFF.FIFFV_ECOG_CH,
"DBS": FIFF.FIFFV_DBS_CH,
"EOG": FIFF.FIFFV_EOG_CH,
"ECG": FIFF.FIFFV_ECG_CH,
"EMG": FIFF.FIFFV_EMG_CH,
"BIO": FIFF.FIFFV_BIO_CH,
"RESP": FIFF.FIFFV_RESP_CH,
"TEMP": FIFF.FIFFV_TEMPERATURE_CH,
"MISC": FIFF.FIFFV_MISC_CH,
"SAO2": FIFF.FIFFV_BIO_CH,
"STIM": FIFF.FIFFV_STIM_CH,
}
@fill_doc
class RawEDF(BaseRaw):
"""Raw object from EDF, EDF+ or BDF file.
Parameters
----------
input_fname : path-like
Path to the EDF, EDF+ or BDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : ``'auto'`` | str | list of str | int | list of int
Defaults to ``'auto'``, which means that channels named ``'status'`` or
``'trigger'`` (case insensitive) are set to STIM. If str (or list of
str), all channels matching the name(s) are set to STIM. If int (or
list of ints), the channels corresponding to the indices are set to
STIM.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(exclude_after_unique)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
mne.io.read_raw_edf : Recommended way to read EDF/EDF+ files.
mne.io.read_raw_bdf : Recommended way to read BDF files.
Notes
-----
%(edf_resamp_note)s
Biosemi devices trigger codes are encoded in 16-bit format, whereas system
codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] &= (2**16 - 1) # doctest:+SKIP
The above operation can be carried out directly in :func:`mne.find_events`
using the ``mask`` and ``mask_type`` parameters (see
:func:`mne.find_events` for more details).
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE. In case it is necessary, for instance to
check the CMS bit, the following operation can be carried out:
>>> cms_bit = 20 # doctest:+SKIP
>>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0 # doctest:+SKIP
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'EDF Annotations' or 'BDF Annotations' are parsed and
extracted annotations are stored in raw.annotations. Use
:func:`mne.events_from_annotations` to obtain events from these
annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
@verbose
def __init__(
self,
input_fname,
eog=None,
misc=None,
stim_channel="auto",
exclude=(),
infer_types=False,
preload=False,
include=None,
units=None,
encoding="utf8",
exclude_after_unique=False,
*,
verbose=None,
):
logger.info(f"Extracting EDF parameters from {input_fname}...")
input_fname = os.path.abspath(input_fname)
info, edf_info, orig_units = _get_info(
input_fname,
stim_channel,
eog,
misc,
exclude,
infer_types,
preload,
include,
exclude_after_unique,
)
logger.info("Creating raw.info structure...")
_validate_type(units, (str, None, dict), "units")
if units is None:
units = dict()
elif isinstance(units, str):
units = {ch_name: units for ch_name in info["ch_names"]}
for k, (this_ch, this_unit) in enumerate(orig_units.items()):
if this_ch not in units:
continue
if this_unit not in ("", units[this_ch]):
raise ValueError(
f"Unit for channel {this_ch} is present in the file as "
f"{repr(this_unit)}, cannot overwrite it with the units "
f"argument {repr(units[this_ch])}."
)
if this_unit == "":
orig_units[this_ch] = units[this_ch]
ch_type = edf_info["ch_types"][k]
scaling = _get_scaling(ch_type.lower(), orig_units[this_ch])
edf_info["units"][k] /= scaling
# Raw attributes
last_samps = [edf_info["nsamples"] - 1]
super().__init__(
info,
preload,
filenames=[input_fname],
raw_extras=[edf_info],
last_samps=last_samps,
orig_format="int",
orig_units=orig_units,
verbose=verbose,
)
# Read annotations from file and set it
if len(edf_info["tal_idx"]) > 0:
# Read TAL data exploiting the header info (no regexp)
idx = np.empty(0, int)
tal_data = self._read_segment_file(
np.empty((0, self.n_times)),
idx,
0,
0,
int(self.n_times),
np.ones((len(idx), 1)),
None,
)
annotations = _read_annotations_edf(
tal_data[0],
ch_names=info["ch_names"],
encoding=encoding,
)
self.set_annotations(annotations, on_missing="warn")
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
return _read_segment_file(
data,
idx,
fi,
start,
stop,
self._raw_extras[fi],
self.filenames[fi],
cals,
mult,
)
@fill_doc
class RawGDF(BaseRaw):
"""Raw object from GDF file.
Parameters
----------
input_fname : path-like
Path to the GDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : ``'auto'`` | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), channels corresponding to the indices are set to STIM.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
mne.io.read_raw_gdf : Recommended way to read GDF files.
Notes
-----
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
@verbose
def __init__(
self,
input_fname,
eog=None,
misc=None,
stim_channel="auto",
exclude=(),
preload=False,
include=None,
verbose=None,
):
logger.info(f"Extracting EDF parameters from {input_fname}...")
input_fname = os.path.abspath(input_fname)
info, edf_info, orig_units = _get_info(
input_fname, stim_channel, eog, misc, exclude, True, preload, include
)
logger.info("Creating raw.info structure...")
# Raw attributes
last_samps = [edf_info["nsamples"] - 1]
super().__init__(
info,
preload,
filenames=[input_fname],
raw_extras=[edf_info],
last_samps=last_samps,
orig_format="int",
orig_units=orig_units,
verbose=verbose,
)
# Read annotations from file and set it
onset, duration, desc = _get_annotations_gdf(edf_info, self.info["sfreq"])
self.set_annotations(
Annotations(
onset=onset, duration=duration, description=desc, orig_time=None
)
)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
return _read_segment_file(
data,
idx,
fi,
start,
stop,
self._raw_extras[fi],
self.filenames[fi],
cals,
mult,
)
def _read_ch(fid, subtype, samp, dtype_byte, dtype=None):
"""Read a number of samples for a single channel."""
# BDF
if subtype == "bdf":
ch_data = np.fromfile(fid, dtype=dtype, count=samp * dtype_byte)
ch_data = ch_data.reshape(-1, 3).astype(INT32)
ch_data = (ch_data[:, 0]) + (ch_data[:, 1] << 8) + (ch_data[:, 2] << 16)
# 24th bit determines the sign
ch_data[ch_data >= (1 << 23)] -= 1 << 24
# GDF data and EDF data
else:
ch_data = np.fromfile(fid, dtype=dtype, count=samp)
return ch_data
def _read_segment_file(data, idx, fi, start, stop, raw_extras, filenames, cals, mult):
"""Read a chunk of raw data."""
n_samps = raw_extras["n_samps"]
buf_len = int(raw_extras["max_samp"])
dtype = raw_extras["dtype_np"]
dtype_byte = raw_extras["dtype_byte"]
data_offset = raw_extras["data_offset"]
stim_channel_idxs = raw_extras["stim_channel_idxs"]
orig_sel = raw_extras["sel"]
tal_idx = raw_extras.get("tal_idx", np.empty(0, int))
subtype = raw_extras["subtype"]
cal = raw_extras["cal"]
offsets = raw_extras["offsets"]
gains = raw_extras["units"]
read_sel = np.concatenate([orig_sel[idx], tal_idx])
tal_data = []
# only try to read the stim channel if it's not None and it's
# actually one of the requested channels
idx_arr = np.arange(idx.start, idx.stop) if isinstance(idx, slice) else idx
# We could read this one EDF block at a time, which would be this:
ch_offsets = np.cumsum(np.concatenate([[0], n_samps]), dtype=np.int64)
block_start_idx, r_lims, _ = _blk_read_lims(start, stop, buf_len)
# But to speed it up, we really need to read multiple blocks at once,
# Otherwise we can end up with e.g. 18,181 chunks for a 20 MB file!
# Let's do ~10 MB chunks:
n_per = max(10 * 1024 * 1024 // (ch_offsets[-1] * dtype_byte), 1)
with open(filenames, "rb", buffering=0) as fid:
# Extract data
start_offset = data_offset + block_start_idx * ch_offsets[-1] * dtype_byte
# first read everything into the `ones` array. For channels with
# lower sampling frequency, there will be zeros left at the end of the
# row. Ignore TAL/annotations channel and only store `orig_sel`
ones = np.zeros((len(orig_sel), data.shape[-1]), dtype=data.dtype)
# save how many samples have already been read per channel
n_smp_read = [0 for _ in range(len(orig_sel))]
# read data in chunks
for ai in range(0, len(r_lims), n_per):
block_offset = ai * ch_offsets[-1] * dtype_byte
n_read = min(len(r_lims) - ai, n_per)
fid.seek(start_offset + block_offset, 0)
# Read and reshape to (n_chunks_read, ch0_ch1_ch2_ch3...)
many_chunk = _read_ch(
fid, subtype, ch_offsets[-1] * n_read, dtype_byte, dtype
).reshape(n_read, -1)
r_sidx = r_lims[ai][0]
r_eidx = buf_len * (n_read - 1) + r_lims[ai + n_read - 1][1]
# loop over selected channels, ci=channel selection
for ii, ci in enumerate(read_sel):
# This now has size (n_chunks_read, n_samp[ci])
ch_data = many_chunk[:, ch_offsets[ci] : ch_offsets[ci + 1]].copy()
# annotation channel has to be treated separately
if ci in tal_idx:
tal_data.append(ch_data)
continue
orig_idx = idx_arr[ii]
ch_data = ch_data * cal[orig_idx]
ch_data += offsets[orig_idx]
ch_data *= gains[orig_idx]
assert ci == orig_sel[orig_idx]
if n_samps[ci] != buf_len:
if orig_idx in stim_channel_idxs:
# Stim channel will be interpolated
old = np.linspace(0, 1, n_samps[ci] + 1, True)
new = np.linspace(0, 1, buf_len, False)
ch_data = np.append(ch_data, np.zeros((len(ch_data), 1)), -1)
ch_data = interp1d(old, ch_data, kind="zero", axis=-1)(new)
elif orig_idx in stim_channel_idxs:
ch_data = np.bitwise_and(ch_data.astype(int), 2**17 - 1)
one_i = ch_data.ravel()[r_sidx:r_eidx]
# note how many samples have been read
smp_read = n_smp_read[orig_idx]
ones[orig_idx, smp_read : smp_read + len(one_i)] = one_i
n_smp_read[orig_idx] += len(one_i)
# resample channels with lower sample frequency
# skip if no data was requested, ie. only annotations were read
if any(n_smp_read) > 0:
# expected number of samples, equals maximum sfreq
smp_exp = data.shape[-1]
# resample data after loading all chunks to prevent edge artifacts
resampled = False
for i, smp_read in enumerate(n_smp_read):
# nothing read, nothing to resample
if smp_read == 0:
continue
# upsample if n_samples is lower than from highest sfreq
if smp_read != smp_exp:
# sanity check that we read exactly how much we expected
assert (ones[i, smp_read:] == 0).all()
ones[i, :] = resample(
ones[i, :smp_read].astype(np.float64),
smp_exp,
smp_read,
npad=0,
axis=-1,
)
resampled = True
# give warning if we resampled a subselection
if resampled and raw_extras["nsamples"] != (stop - start):
warn(
"Loading an EDF with mixed sampling frequencies and "
"preload=False will result in edge artifacts. "
"It is recommended to use preload=True."
"See also https://github.com/mne-tools/mne-python/issues/10635"
)
_mult_cal_one(data[:, :], ones, idx, cals, mult)
if len(tal_data) > 1:
tal_data = np.concatenate([tal.ravel() for tal in tal_data])
tal_data = tal_data[np.newaxis, :]
return tal_data
@fill_doc
def _read_header(fname, exclude, infer_types, include=None, exclude_after_unique=False):
"""Unify EDF, BDF and GDF _read_header call.
Parameters
----------
fname : str
Path to the EDF+, BDF, or GDF file.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
%(exclude_after_unique)s
Returns
-------
(edf_info, orig_units) : tuple
"""
ext = os.path.splitext(fname)[1][1:].lower()
logger.info(f"{ext.upper()} file detected")
if ext in ("bdf", "edf"):
return _read_edf_header(
fname, exclude, infer_types, include, exclude_after_unique
)
elif ext == "gdf":
return _read_gdf_header(fname, exclude, include), None
else:
raise NotImplementedError(
f"Only GDF, EDF, and BDF files are supported, got {ext}."
)
def _get_info(
fname,
stim_channel,
eog,
misc,
exclude,
infer_types,
preload,
include=None,
exclude_after_unique=False,
):
"""Extract information from EDF+, BDF or GDF file."""
eog = eog if eog is not None else []
misc = misc if misc is not None else []
edf_info, orig_units = _read_header(
fname, exclude, infer_types, include, exclude_after_unique
)
# XXX: `tal_ch_names` to pass to `_check_stim_channel` should be computed
# from `edf_info['ch_names']` and `edf_info['tal_idx']` but 'tal_idx'
# contains stim channels that are not TAL.
stim_channel_idxs, _ = _check_stim_channel(stim_channel, edf_info["ch_names"])
sel = edf_info["sel"] # selection of channels not excluded
ch_names = edf_info["ch_names"] # of length len(sel)
if "ch_types" in edf_info:
ch_types = edf_info["ch_types"] # of length len(sel)
else:
ch_types = [None] * len(sel)
if len(sel) == 0: # only want stim channels
n_samps = edf_info["n_samps"][[0]]
else:
n_samps = edf_info["n_samps"][sel]
nchan = edf_info["nchan"]
physical_ranges = edf_info["physical_max"] - edf_info["physical_min"]
cals = edf_info["digital_max"] - edf_info["digital_min"]
bad_idx = np.where((~np.isfinite(cals)) | (cals == 0))[0]
if len(bad_idx) > 0:
warn(
"Scaling factor is not defined in following channels:\n"
+ ", ".join(ch_names[i] for i in bad_idx)
)
cals[bad_idx] = 1
bad_idx = np.where(physical_ranges == 0)[0]
if len(bad_idx) > 0:
warn(
"Physical range is not defined in following channels:\n"
+ ", ".join(ch_names[i] for i in bad_idx)
)
physical_ranges[bad_idx] = 1
# Creates a list of dicts of eeg channels for raw.info
logger.info("Setting channel info structure...")
chs = list()
pick_mask = np.ones(len(ch_names))
chs_without_types = list()
for idx, ch_name in enumerate(ch_names):
chan_info = {}
chan_info["cal"] = 1.0
chan_info["logno"] = idx + 1
chan_info["scanno"] = idx + 1
chan_info["range"] = 1.0
chan_info["unit_mul"] = FIFF.FIFF_UNITM_NONE
chan_info["ch_name"] = ch_name
chan_info["unit"] = FIFF.FIFF_UNIT_V
chan_info["coord_frame"] = FIFF.FIFFV_COORD_HEAD
chan_info["coil_type"] = FIFF.FIFFV_COIL_EEG
chan_info["kind"] = FIFF.FIFFV_EEG_CH
# montage can't be stored in EDF so channel locs are unknown:
chan_info["loc"] = np.full(12, np.nan)
# if the edf info contained channel type information
# set it now
ch_type = ch_types[idx]
if ch_type is not None and ch_type in CH_TYPE_MAPPING:
chan_info["kind"] = CH_TYPE_MAPPING.get(ch_type)
if ch_type not in ["EEG", "ECOG", "SEEG", "DBS"]:
chan_info["coil_type"] = FIFF.FIFFV_COIL_NONE
pick_mask[idx] = False
# if user passes in explicit mapping for eog, misc and stim
# channels set them here
if ch_name in eog or idx in eog or idx - nchan in eog:
chan_info["coil_type"] = FIFF.FIFFV_COIL_NONE
chan_info["kind"] = FIFF.FIFFV_EOG_CH
pick_mask[idx] = False
elif ch_name in misc or idx in misc or idx - nchan in misc:
chan_info["coil_type"] = FIFF.FIFFV_COIL_NONE
chan_info["kind"] = FIFF.FIFFV_MISC_CH
pick_mask[idx] = False
elif idx in stim_channel_idxs:
chan_info["coil_type"] = FIFF.FIFFV_COIL_NONE
chan_info["unit"] = FIFF.FIFF_UNIT_NONE
chan_info["kind"] = FIFF.FIFFV_STIM_CH
pick_mask[idx] = False
chan_info["ch_name"] = ch_name
ch_names[idx] = chan_info["ch_name"]
edf_info["units"][idx] = 1
elif ch_type not in CH_TYPE_MAPPING:
chs_without_types.append(ch_name)
chs.append(chan_info)
# warn if channel type was not inferable
if len(chs_without_types):
msg = (
"Could not determine channel type of the following channels, "
f"they will be set as EEG:\n{', '.join(chs_without_types)}"
)
logger.info(msg)
edf_info["stim_channel_idxs"] = stim_channel_idxs
if any(pick_mask):
picks = [item for item, mask in zip(range(nchan), pick_mask) if mask]
edf_info["max_samp"] = max_samp = n_samps[picks].max()
else:
edf_info["max_samp"] = max_samp = n_samps.max()
# Info structure
# -------------------------------------------------------------------------
not_stim_ch = [x for x in range(n_samps.shape[0]) if x not in stim_channel_idxs]
if len(not_stim_ch) == 0: # only loading stim channels
not_stim_ch = list(range(len(n_samps)))
sfreq = (
np.take(n_samps, not_stim_ch).max()
* edf_info["record_length"][1]
/ edf_info["record_length"][0]
)
del n_samps
info = _empty_info(sfreq)
info["meas_date"] = edf_info["meas_date"]
info["chs"] = chs
info["ch_names"] = ch_names
# Subject information
info["subject_info"] = {}
# String subject identifier
if edf_info["subject_info"].get("id") is not None:
info["subject_info"]["his_id"] = edf_info["subject_info"]["id"]
# Subject sex (0=unknown, 1=male, 2=female)
if edf_info["subject_info"].get("sex") is not None:
if edf_info["subject_info"]["sex"] == "M":
info["subject_info"]["sex"] = 1
elif edf_info["subject_info"]["sex"] == "F":
info["subject_info"]["sex"] = 2
else:
info["subject_info"]["sex"] = 0
# Subject names (first, middle, last).
if edf_info["subject_info"].get("name") is not None:
sub_names = edf_info["subject_info"]["name"].split("_")
if len(sub_names) < 2 or len(sub_names) > 3:
info["subject_info"]["last_name"] = edf_info["subject_info"]["name"]
elif len(sub_names) == 2:
info["subject_info"]["first_name"] = sub_names[0]
info["subject_info"]["last_name"] = sub_names[1]
else:
info["subject_info"]["first_name"] = sub_names[0]
info["subject_info"]["middle_name"] = sub_names[1]
info["subject_info"]["last_name"] = sub_names[2]
# Birthday in (year, month, day) format.
if isinstance(edf_info["subject_info"].get("birthday"), datetime):
info["subject_info"]["birthday"] = date(
edf_info["subject_info"]["birthday"].year,
edf_info["subject_info"]["birthday"].month,
edf_info["subject_info"]["birthday"].day,
)
# Handedness (1=right, 2=left, 3=ambidextrous).
if edf_info["subject_info"].get("hand") is not None:
info["subject_info"]["hand"] = int(edf_info["subject_info"]["hand"])
# Height in meters.
if edf_info["subject_info"].get("height") is not None:
info["subject_info"]["height"] = float(edf_info["subject_info"]["height"])
# Weight in kilograms.
if edf_info["subject_info"].get("weight") is not None:
info["subject_info"]["weight"] = float(edf_info["subject_info"]["weight"])
# Remove values after conversion to help with in-memory anonymization
for key in ("subject_info", "meas_date"):
del edf_info[key]
# Filter settings
if filt_ch_idxs := [x for x in range(len(sel)) if x not in stim_channel_idxs]:
_set_prefilter(info, edf_info, filt_ch_idxs, "highpass")
_set_prefilter(info, edf_info, filt_ch_idxs, "lowpass")
if np.isnan(info["lowpass"]):
info["lowpass"] = info["sfreq"] / 2.0
if info["highpass"] > info["lowpass"]:
warn(
f"Highpass cutoff frequency {info['highpass']} is greater "
f"than lowpass cutoff frequency {info['lowpass']}, "
"setting values to 0 and Nyquist."
)
info["highpass"] = 0.0
info["lowpass"] = info["sfreq"] / 2.0
# Some keys to be consistent with FIF measurement info
info["description"] = None
edf_info["nsamples"] = int(edf_info["n_records"] * max_samp)
info._unlocked = False
info._update_redundant()
# Later used for reading
edf_info["cal"] = physical_ranges / cals
# physical dimension in µV
edf_info["offsets"] = (
edf_info["physical_min"] - edf_info["digital_min"] * edf_info["cal"]
)
del edf_info["physical_min"]
del edf_info["digital_min"]
if edf_info["subtype"] == "bdf":
edf_info["cal"][stim_channel_idxs] = 1
edf_info["offsets"][stim_channel_idxs] = 0
edf_info["units"][stim_channel_idxs] = 1
return info, edf_info, orig_units
def _parse_prefilter_string(prefiltering):
"""Parse prefilter string from EDF+ and BDF headers."""
filter_types = ["HP", "LP"]
filter_strings = {t: [] for t in filter_types}
for filt in prefiltering:
for t in filter_types:
matches = re.findall(rf"{t}:\s*([a-zA-Z0-9,.]+)(Hz)?", filt)
value = ""
for match in matches:
if match[0]:
value = match[0].replace("Hz", "").replace(",", ".")
filter_strings[t].append(value)
return np.array(filter_strings["HP"]), np.array(filter_strings["LP"])
def _prefilter_float(filt):
if isinstance(filt, int | float | np.number):
return filt
if filt == "DC":
return 0.0
if filt.replace(".", "", 1).isdigit():
return float(filt)
return np.nan
def _set_prefilter(info, edf_info, ch_idxs, key):
value = 0
if len(values := edf_info.get(key, [])):
values = [x for i, x in enumerate(values) if i in ch_idxs]
if len(np.unique(values)) > 1:
warn(
f"Channels contain different {key} filters. "
f"{'Highest' if key == 'highpass' else 'Lowest'} filter "
"setting will be stored."
)
if key == "highpass":
value = np.nanmax([_prefilter_float(x) for x in values])
else:
value = np.nanmin([_prefilter_float(x) for x in values])
else:
value = _prefilter_float(values[0])
if not np.isnan(value) and value != 0:
info[key] = value
def _edf_str(x):
return x.decode("latin-1").split("\x00")[0]
def _edf_str_num(x):
return _edf_str(x).replace(",", ".")
def _read_edf_header(
fname, exclude, infer_types, include=None, exclude_after_unique=False
):
"""Read header information from EDF+ or BDF file."""
edf_info = {"events": []}
with open(fname, "rb") as fid:
fid.read(8) # version (unused here)
# patient ID
patient = {}
id_info = fid.read(80).decode("latin-1").rstrip()
id_info = id_info.split(" ")
if len(id_info):
patient["id"] = id_info[0]
if len(id_info) >= 4:
try:
birthdate = datetime.strptime(id_info[2], "%d-%b-%Y")
except ValueError:
birthdate = "X"
patient["sex"] = id_info[1]
patient["birthday"] = birthdate
patient["name"] = id_info[3]
if len(id_info) > 4:
for info in id_info[4:]:
if "=" in info:
key, value = info.split("=")
err = f"patient {key} info cannot be {value}, skipping."
if key in ["weight", "height"]:
try:
patient[key] = float(value)
except ValueError:
logger.debug(err)
continue
elif key in ["hand"]:
try:
patient[key] = int(value)
except ValueError:
logger.debug(err)
continue
else:
warn(f"Invalid patient information {key}")
# Recording ID
rec_info = fid.read(80).decode("latin-1").rstrip().split(" ")
# if the measurement date is available in the recording info, it's used instead
# of the file's meas_date since it contains all 4 digits of the year.
meas_date = None
if len(rec_info) == 5:
try:
meas_date = datetime.strptime(rec_info[1], "%d-%b-%Y")
except Exception:
meas_date = None
else:
fid.read(8) # skip the file's meas_date
if meas_date is None:
try:
meas_date = fid.read(8).decode("latin-1")
day, month, year = (int(x) for x in meas_date.split("."))
year = year + 2000 if year < 85 else year + 1900
meas_date = datetime(year, month, day)
except Exception:
meas_date = None
if meas_date is not None:
# try to get the hour/minute/sec from the recording info
try:
meas_time = fid.read(8).decode("latin-1")
hour, minute, second = (int(x) for x in meas_time.split("."))
except Exception:
hour, minute, second = 0, 0, 0
meas_date = meas_date.replace(
hour=hour, minute=minute, second=second, tzinfo=timezone.utc
)
else:
fid.read(8) # skip the file's measurement time
warn("Invalid measurement date encountered in the header.")
header_nbytes = int(_edf_str(fid.read(8)))
# The following 44 bytes sometimes identify the file type, but this is
# not guaranteed. Therefore, we skip this field and use the file
# extension to determine the subtype (EDF or BDF, which differ in the
# number of bytes they use for the data records; EDF uses 2 bytes
# whereas BDF uses 3 bytes).
fid.read(44)
subtype = os.path.splitext(fname)[1][1:].lower()
n_records = int(_edf_str(fid.read(8)))
record_length = float(_edf_str(fid.read(8)))
record_length = np.array([record_length, 1.0]) # in seconds
if record_length[0] == 0:
record_length[0] = 1.0
warn(
"Header information is incorrect for record length. Default "
"record length set to 1.\nIt is possible that this file only"
" contains annotations and no signals. In that case, please "
"use mne.read_annotations() to load these annotations."
)
nchan = int(_edf_str(fid.read(4)))
channels = list(range(nchan))
# read in 16 byte labels and strip any extra spaces at the end
ch_labels = [fid.read(16).strip().decode("latin-1") for _ in channels]
# get channel names and optionally channel type
# EDF specification contains 16 bytes that encode channel names,
# optionally prefixed by a string representing channel type separated
# by a space
if infer_types:
ch_types, ch_names = [], []
for ch_label in ch_labels:
ch_type, ch_name = "EEG", ch_label # default to EEG
parts = ch_label.split(" ")
if len(parts) > 1:
if parts[0].upper() in CH_TYPE_MAPPING:
ch_type = parts[0].upper()
ch_name = " ".join(parts[1:])
logger.info(
f"Channel '{ch_label}' recognized as type "
f"{ch_type} (renamed to '{ch_name}')."
)
ch_types.append(ch_type)
ch_names.append(ch_name)
else:
ch_types, ch_names = ["EEG"] * nchan, ch_labels
tal_idx = _find_tal_idx(ch_names)
if exclude_after_unique:
# make sure channel names are unique
ch_names = _unique_channel_names(ch_names)
exclude = _find_exclude_idx(ch_names, exclude, include)
exclude = np.concatenate([exclude, tal_idx])
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
for ch in channels:
fid.read(80) # transducer
units = [fid.read(8).strip().decode("latin-1") for ch in channels]
edf_info["units"] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
# allow μ (greek mu), µ (micro symbol) and μ (sjis mu) codepoints
if unit in ("\u03bcV", "\u00b5V", "\x83\xcaV", "uV"):
edf_info["units"].append(1e-6)
elif unit == "mV":
edf_info["units"].append(1e-3)
else:
edf_info["units"].append(1)
edf_info["units"] = np.array(edf_info["units"], float)
ch_names = [ch_names[idx] for idx in sel]
ch_types = [ch_types[idx] for idx in sel]
units = [units[idx] for idx in sel]
if not exclude_after_unique:
# make sure channel names are unique
ch_names = _unique_channel_names(ch_names)
orig_units = dict(zip(ch_names, units))
physical_min = np.array([float(_edf_str_num(fid.read(8))) for ch in channels])[
sel
]
physical_max = np.array([float(_edf_str_num(fid.read(8))) for ch in channels])[
sel
]
digital_min = np.array([float(_edf_str_num(fid.read(8))) for ch in channels])[
sel
]
digital_max = np.array([float(_edf_str_num(fid.read(8))) for ch in channels])[
sel
]
prefiltering = np.array([_edf_str(fid.read(80)).strip() for ch in channels])
highpass, lowpass = _parse_prefilter_string(prefiltering)
# number of samples per record
n_samps = np.array([int(_edf_str(fid.read(8))) for ch in channels])
# Populate edf_info
edf_info.update(
ch_names=ch_names,
ch_types=ch_types,
data_offset=header_nbytes,
digital_max=digital_max,
digital_min=digital_min,
highpass=highpass,
sel=sel,
lowpass=lowpass,
meas_date=meas_date,
n_records=n_records,
n_samps=n_samps,
nchan=nchan,
subject_info=patient,
physical_max=physical_max,
physical_min=physical_min,
record_length=record_length,
subtype=subtype,
tal_idx=tal_idx,
)
fid.read(32 * nchan).decode() # reserved
assert fid.tell() == header_nbytes
fid.seek(0, 2)
n_bytes = fid.tell()
n_data_bytes = n_bytes - header_nbytes
total_samps = n_data_bytes // 3 if subtype == "bdf" else n_data_bytes // 2
read_records = total_samps // np.sum(n_samps)
if n_records != read_records:
warn(
"Number of records from the header does not match the file "
"size (perhaps the recording was not stopped before exiting)."
" Inferring from the file size."
)
edf_info["n_records"] = read_records
del n_records
if subtype == "bdf":
edf_info["dtype_byte"] = 3 # 24-bit (3 byte) integers
edf_info["dtype_np"] = UINT8
else:
edf_info["dtype_byte"] = 2 # 16-bit (2 byte) integers
edf_info["dtype_np"] = INT16
return edf_info, orig_units
INT8 = "<i1"
UINT8 = "<u1"
INT16 = "<i2"
UINT16 = "<u2"
INT32 = "<i4"
UINT32 = "<u4"
INT64 = "<i8"
UINT64 = "<u8"
FLOAT32 = "<f4"
FLOAT64 = "<f8"
GDFTYPE_NP = (
None,
INT8,
UINT8,
INT16,
UINT16,
INT32,
UINT32,
INT64,
UINT64,
None,
None,
None,
None,
None,
None,
None,
FLOAT32,
FLOAT64,
)
GDFTYPE_BYTE = tuple(np.dtype(x).itemsize if x is not None else 0 for x in GDFTYPE_NP)
def _check_dtype_byte(types):
assert sum(GDFTYPE_BYTE) == 42
dtype_byte = [GDFTYPE_BYTE[t] for t in types]
dtype_np = [GDFTYPE_NP[t] for t in types]
if len(np.unique(dtype_byte)) > 1:
# We will not read it properly, so this should be an error
raise RuntimeError("Reading multiple data types not supported")
return dtype_np[0], dtype_byte[0]
def _read_gdf_header(fname, exclude, include=None):
"""Read GDF 1.x and GDF 2.x header info."""
edf_info = dict()
events = None
with open(fname, "rb") as fid:
version = fid.read(8).decode()
edf_info["type"] = edf_info["subtype"] = version[:3]
edf_info["number"] = float(version[4:])
meas_date = None
# GDF 1.x
# ---------------------------------------------------------------------
if edf_info["number"] < 1.9:
# patient ID
pid = fid.read(80).decode("latin-1")
pid = pid.split(" ", 2)
patient = {}
if len(pid) >= 2:
patient["id"] = pid[0]
patient["name"] = pid[1]
# Recording ID
meas_id = {}
meas_id["recording_id"] = _edf_str(fid.read(80)).strip()
# date
tm = _edf_str(fid.read(16)).strip()
try:
if tm[14:16] == " ":
tm = tm[:14] + "00" + tm[16:]
meas_date = datetime(
int(tm[0:4]),
int(tm[4:6]),
int(tm[6:8]),
int(tm[8:10]),
int(tm[10:12]),
int(tm[12:14]),
int(tm[14:16]) * pow(10, 4),
tzinfo=timezone.utc,
)
except Exception:
pass
header_nbytes = np.fromfile(fid, INT64, 1)[0]
meas_id["equipment"] = np.fromfile(fid, UINT8, 8)[0]
meas_id["hospital"] = np.fromfile(fid, UINT8, 8)[0]
meas_id["technician"] = np.fromfile(fid, UINT8, 8)[0]
fid.seek(20, 1) # 20bytes reserved
n_records = np.fromfile(fid, INT64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, UINT32, 2)
if record_length[0] == 0:
record_length[0] = 1.0
warn(
"Header information is incorrect for record length. "
"Default record length set to 1."
)
nchan = int(np.fromfile(fid, UINT32, 1)[0])
channels = list(range(nchan))
ch_names = [_edf_str(fid.read(16)).strip() for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude, include)
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
fid.seek(80 * len(channels), 1) # transducer
units = [_edf_str(fid.read(8)).strip() for ch in channels]
edf_info["units"] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
if unit[:2] == "uV":
edf_info["units"].append(1e-6)
else:
edf_info["units"].append(1)
edf_info["units"] = np.array(edf_info["units"], float)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, FLOAT64, len(channels))
physical_max = np.fromfile(fid, FLOAT64, len(channels))
digital_min = np.fromfile(fid, INT64, len(channels))
digital_max = np.fromfile(fid, INT64, len(channels))
prefiltering = [_edf_str(fid.read(80)) for ch in channels]
highpass, lowpass = _parse_prefilter_string(prefiltering)
# n samples per record
n_samps = np.fromfile(fid, INT32, len(channels))
# channel data type
dtype = np.fromfile(fid, INT32, len(channels))
# total number of bytes for data
bytes_tot = np.sum(
[GDFTYPE_BYTE[t] * n_samps[i] for i, t in enumerate(dtype)]
)
# Populate edf_info
dtype_np, dtype_byte = _check_dtype_byte(dtype)
edf_info.update(
bytes_tot=bytes_tot,
ch_names=ch_names,
data_offset=header_nbytes,
digital_min=digital_min,
digital_max=digital_max,
dtype_byte=dtype_byte,
dtype_np=dtype_np,
exclude=exclude,
highpass=highpass,
sel=sel,
lowpass=lowpass,
meas_date=meas_date,
meas_id=meas_id,
n_records=n_records,
n_samps=n_samps,
nchan=nchan,
subject_info=patient,
physical_max=physical_max,
physical_min=physical_min,
record_length=record_length,
)
fid.seek(32 * edf_info["nchan"], 1) # reserved
assert fid.tell() == header_nbytes
# Event table
# -----------------------------------------------------------------
etp = header_nbytes + n_records * edf_info["bytes_tot"]
# skip data to go to event table
fid.seek(etp)
etmode = np.fromfile(fid, UINT8, 1)[0]
if etmode in (1, 3):
sr = np.fromfile(fid, UINT8, 3).astype(np.uint32)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2 ** (i * 8)
n_events = np.fromfile(fid, UINT32, 1)[0]
pos = np.fromfile(fid, UINT32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, UINT16, n_events)
if etmode == 3:
chn = np.fromfile(fid, UINT16, n_events)
dur = np.fromfile(fid, UINT32, n_events)
else:
chn = np.zeros(n_events, dtype=np.int32)
dur = np.ones(n_events, dtype=UINT32)
np.maximum(dur, 1, out=dur)
events = [n_events, pos, typ, chn, dur]
# GDF 2.x
# ---------------------------------------------------------------------
else:
# FIXED HEADER
handedness = ("Unknown", "Right", "Left", "Equal")
gender = ("Unknown", "Male", "Female")
scale = ("Unknown", "No", "Yes", "Corrected")
# date
pid = fid.read(66).decode()
pid = pid.split(" ", 2)
patient = {}
if len(pid) >= 2:
patient["id"] = pid[0]
patient["name"] = pid[1]
fid.seek(10, 1) # 10bytes reserved
# Smoking / Alcohol abuse / drug abuse / medication
sadm = np.fromfile(fid, UINT8, 1)[0]
patient["smoking"] = scale[sadm % 4]
patient["alcohol_abuse"] = scale[(sadm >> 2) % 4]
patient["drug_abuse"] = scale[(sadm >> 4) % 4]
patient["medication"] = scale[(sadm >> 6) % 4]
patient["weight"] = np.fromfile(fid, UINT8, 1)[0]
if patient["weight"] == 0 or patient["weight"] == 255:
patient["weight"] = None
patient["height"] = np.fromfile(fid, UINT8, 1)[0]
if patient["height"] == 0 or patient["height"] == 255:
patient["height"] = None
# Gender / Handedness / Visual Impairment
ghi = np.fromfile(fid, UINT8, 1)[0]
patient["sex"] = gender[ghi % 4]
patient["handedness"] = handedness[(ghi >> 2) % 4]
patient["visual"] = scale[(ghi >> 4) % 4]
# Recording identification
meas_id = {}
meas_id["recording_id"] = _edf_str(fid.read(64)).strip()
vhsv = np.fromfile(fid, UINT8, 4)
loc = {}
if vhsv[3] == 0:
loc["vertpre"] = 10 * int(vhsv[0] >> 4) + int(vhsv[0] % 16)
loc["horzpre"] = 10 * int(vhsv[1] >> 4) + int(vhsv[1] % 16)
loc["size"] = 10 * int(vhsv[2] >> 4) + int(vhsv[2] % 16)
else:
loc["vertpre"] = 29
loc["horzpre"] = 29
loc["size"] = 29
loc["version"] = 0
loc["latitude"] = float(np.fromfile(fid, UINT32, 1)[0]) / 3600000
loc["longitude"] = float(np.fromfile(fid, UINT32, 1)[0]) / 3600000
loc["altitude"] = float(np.fromfile(fid, INT32, 1)[0]) / 100
meas_id["loc"] = loc
meas_date = np.fromfile(fid, UINT64, 1)[0]
if meas_date != 0:
meas_date = datetime(1, 1, 1, tzinfo=timezone.utc) + timedelta(
meas_date * pow(2, -32) - 367
)
else:
meas_date = None
birthday = np.fromfile(fid, UINT64, 1).tolist()[0]
if birthday == 0:
birthday = datetime(1, 1, 1, tzinfo=timezone.utc)
else:
birthday = datetime(1, 1, 1, tzinfo=timezone.utc) + timedelta(
birthday * pow(2, -32) - 367
)
patient["birthday"] = birthday
if patient["birthday"] != datetime(1, 1, 1, 0, 0, tzinfo=timezone.utc):
today = datetime.now(tz=timezone.utc)
patient["age"] = today.year - patient["birthday"].year
# fudge the day by -1 if today happens to be a leap day
day = 28 if today.month == 2 and today.day == 29 else today.day
today = today.replace(year=patient["birthday"].year, day=day)
if today < patient["birthday"]:
patient["age"] -= 1
else:
patient["age"] = None
header_nbytes = np.fromfile(fid, UINT16, 1)[0] * 256
fid.seek(6, 1) # 6 bytes reserved
meas_id["equipment"] = np.fromfile(fid, UINT8, 8)
meas_id["ip"] = np.fromfile(fid, UINT8, 6)
patient["headsize"] = np.fromfile(fid, UINT16, 3)
patient["headsize"] = np.asarray(patient["headsize"], np.float32)
patient["headsize"] = np.ma.masked_array(
patient["headsize"], np.equal(patient["headsize"], 0), None
).filled()
ref = np.fromfile(fid, FLOAT32, 3)
gnd = np.fromfile(fid, FLOAT32, 3)
n_records = np.fromfile(fid, INT64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, UINT32, 2)
if record_length[0] == 0:
record_length[0] = 1.0
warn(
"Header information is incorrect for record length. "
"Default record length set to 1."
)
nchan = int(np.fromfile(fid, UINT16, 1)[0])
fid.seek(2, 1) # 2bytes reserved
# Channels (variable header)
channels = list(range(nchan))
ch_names = [_edf_str(fid.read(16)).strip() for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude, include)
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
fid.seek(80 * len(channels), 1) # reserved space
fid.seek(6 * len(channels), 1) # phys_dim, obsolete
"""The Physical Dimensions are encoded as int16, according to:
- Units codes :
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/units.csv
- Decimal factors codes:
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/DecimalFactors.txt
""" # noqa
units = np.fromfile(fid, UINT16, len(channels)).tolist()
unitcodes = np.array(units[:])
edf_info["units"] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
if unit == 4275: # microvolts
edf_info["units"].append(1e-6)
elif unit == 4274: # millivolts
edf_info["units"].append(1e-3)
elif unit == 512: # dimensionless
edf_info["units"].append(1)
elif unit == 0:
edf_info["units"].append(1) # unrecognized
else:
warn(
f"Unsupported physical dimension for channel {i} "
"(assuming dimensionless). Please contact the "
"MNE-Python developers for support."
)
edf_info["units"].append(1)
edf_info["units"] = np.array(edf_info["units"], float)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, FLOAT64, len(channels))
physical_max = np.fromfile(fid, FLOAT64, len(channels))
digital_min = np.fromfile(fid, FLOAT64, len(channels))
digital_max = np.fromfile(fid, FLOAT64, len(channels))
fid.seek(68 * len(channels), 1) # obsolete
lowpass = np.fromfile(fid, FLOAT32, len(channels))
highpass = np.fromfile(fid, FLOAT32, len(channels))
notch = np.fromfile(fid, FLOAT32, len(channels))
# number of samples per record
n_samps = np.fromfile(fid, INT32, len(channels))
# data type
dtype = np.fromfile(fid, INT32, len(channels))
channel = {}
channel["xyz"] = [np.fromfile(fid, FLOAT32, 3)[0] for ch in channels]
if edf_info["number"] < 2.19:
impedance = np.fromfile(fid, UINT8, len(channels)).astype(float)
impedance[impedance == 255] = np.nan
channel["impedance"] = pow(2, impedance / 8)
fid.seek(19 * len(channels), 1) # reserved
else:
tmp = np.fromfile(fid, FLOAT32, 5 * len(channels))
tmp = tmp[::5]
fZ = tmp[:]
impedance = tmp[:]
# channels with no voltage (code 4256) data
ch = [unitcodes & 65504 != 4256][0]
impedance[np.where(ch)] = None
# channel with no impedance (code 4288) data
ch = [unitcodes & 65504 != 4288][0]
fZ[np.where(ch)[0]] = None
assert fid.tell() == header_nbytes
# total number of bytes for data
bytes_tot = np.sum(
[GDFTYPE_BYTE[t] * n_samps[i] for i, t in enumerate(dtype)]
)
# Populate edf_info
dtype_np, dtype_byte = _check_dtype_byte(dtype)
edf_info.update(
bytes_tot=bytes_tot,
ch_names=ch_names,
data_offset=header_nbytes,
dtype_byte=dtype_byte,
dtype_np=dtype_np,
digital_min=digital_min,
digital_max=digital_max,
exclude=exclude,
gnd=gnd,
highpass=highpass,
sel=sel,
impedance=impedance,
lowpass=lowpass,
meas_date=meas_date,
meas_id=meas_id,
n_records=n_records,
n_samps=n_samps,
nchan=nchan,
notch=notch,
subject_info=patient,
physical_max=physical_max,
physical_min=physical_min,
record_length=record_length,
ref=ref,
)
# EVENT TABLE
# -----------------------------------------------------------------
etp = (
edf_info["data_offset"] + edf_info["n_records"] * edf_info["bytes_tot"]
)
fid.seek(etp) # skip data to go to event table
etmode = fid.read(1).decode()
if etmode != "":
etmode = np.fromstring(etmode, UINT8).tolist()[0]
if edf_info["number"] < 1.94:
sr = np.fromfile(fid, UINT8, 3)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2 ** (i * 8)
n_events = np.fromfile(fid, UINT32, 1)[0]
else:
ne = np.fromfile(fid, UINT8, 3)
n_events = sum(int(ne[i]) << (i * 8) for i in range(len(ne)))
event_sr = np.fromfile(fid, FLOAT32, 1)[0]
pos = np.fromfile(fid, UINT32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, UINT16, n_events)
if etmode == 3:
chn = np.fromfile(fid, UINT16, n_events)
dur = np.fromfile(fid, UINT32, n_events)
else:
chn = np.zeros(n_events, dtype=np.uint32)
dur = np.ones(n_events, dtype=np.uint32)
np.maximum(dur, 1, out=dur)
events = [n_events, pos, typ, chn, dur]
edf_info["event_sfreq"] = event_sr
edf_info.update(events=events, sel=np.arange(len(edf_info["ch_names"])))
return edf_info
def _check_stim_channel(
stim_channel,
ch_names,
tal_ch_names=("EDF Annotations", "BDF Annotations"),
):
"""Check that the stimulus channel exists in the current datafile."""
DEFAULT_STIM_CH_NAMES = ["status", "trigger"]
if stim_channel is None or stim_channel is False:
return [], []
if stim_channel is True: # convenient aliases
stim_channel = "auto"
elif isinstance(stim_channel, str):
if stim_channel == "auto":
if "auto" in ch_names:
warn(
RuntimeWarning,
"Using `stim_channel='auto'` when auto"
" also corresponds to a channel name is ambiguous."
" Please use `stim_channel=['auto']`.",
)
else:
valid_stim_ch_names = DEFAULT_STIM_CH_NAMES
else:
valid_stim_ch_names = [stim_channel.lower()]
elif isinstance(stim_channel, int):
valid_stim_ch_names = [ch_names[stim_channel].lower()]
elif isinstance(stim_channel, list):
if all([isinstance(s, str) for s in stim_channel]):
valid_stim_ch_names = [s.lower() for s in stim_channel]
elif all([isinstance(s, int) for s in stim_channel]):
valid_stim_ch_names = [ch_names[s].lower() for s in stim_channel]
else:
raise ValueError("Invalid stim_channel")
else:
raise ValueError("Invalid stim_channel")
# Forbid the synthesis of stim channels from TAL Annotations
tal_ch_names_found = [
ch for ch in valid_stim_ch_names if ch in [t.lower() for t in tal_ch_names]
]
if len(tal_ch_names_found):
_msg = (
"The synthesis of the stim channel is not supported since 0.18. Please "
f"remove {tal_ch_names_found} from `stim_channel` and use "
"`mne.events_from_annotations` instead."
)
raise ValueError(_msg)
ch_names_low = [ch.lower() for ch in ch_names]
found = list(set(valid_stim_ch_names) & set(ch_names_low))
if not found:
return [], []
else:
stim_channel_idxs = [ch_names_low.index(f) for f in found]
names = [ch_names[idx] for idx in stim_channel_idxs]
return stim_channel_idxs, names
def _find_exclude_idx(ch_names, exclude, include=None):
"""Find indices of all channels to exclude.
If there are several channels called "A" and we want to exclude "A", then
add (the index of) all "A" channels to the exclusion list.
"""
if include: # find other than include channels
if exclude:
raise ValueError(
f"'exclude' must be empty if 'include' is assigned. Got {exclude}."
)
if isinstance(include, str): # regex for channel names
indices_include = []
for idx, ch in enumerate(ch_names):
if re.match(include, ch):
indices_include.append(idx)
indices = np.setdiff1d(np.arange(len(ch_names)), indices_include)
return indices
# list of channel names
return [idx for idx, ch in enumerate(ch_names) if ch not in include]
if isinstance(exclude, str): # regex for channel names
indices = []
for idx, ch in enumerate(ch_names):
if re.match(exclude, ch):
indices.append(idx)
return indices
# list of channel names
return [idx for idx, ch in enumerate(ch_names) if ch in exclude]
def _find_tal_idx(ch_names):
# Annotations / TAL Channels
accepted_tal_ch_names = ["EDF Annotations", "BDF Annotations"]
tal_channel_idx = np.where(np.isin(ch_names, accepted_tal_ch_names))[0]
return tal_channel_idx
@fill_doc
def read_raw_edf(
input_fname,
eog=None,
misc=None,
stim_channel="auto",
exclude=(),
infer_types=False,
include=None,
preload=False,
units=None,
encoding="utf8",
exclude_after_unique=False,
*,
verbose=None,
) -> RawEDF:
"""Reader function for EDF and EDF+ files.
Parameters
----------
input_fname : path-like
Path to the EDF or EDF+ file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : ``'auto'`` | str | list of str | int | list of int
Defaults to ``'auto'``, which means that channels named ``'status'`` or
``'trigger'`` (case insensitive) are set to STIM. If str (or list of
str), all channels matching the name(s) are set to STIM. If int (or
list of ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(exclude_after_unique)s
%(verbose)s
Returns
-------
raw : instance of RawEDF
The raw instance.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.read_raw_bdf : Reader function for BDF files.
mne.io.read_raw_gdf : Reader function for GDF files.
mne.export.export_raw : Export function for EDF files.
mne.io.Raw : Documentation of attributes and methods of RawEDF.
Notes
-----
%(edf_resamp_note)s
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'EDF Annotations' are parsed and extracted annotations
are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
obtain events from these annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
The EDF specification allows optional storage of channel types in the
prefix of the signal label for each channel. For example, ``EEG Fz``
implies that ``Fz`` is an EEG channel and ``MISC E`` would imply ``E`` is
a MISC channel. However, there is no standard way of specifying all
channel types. MNE-Python will try to infer the channel type, when such a
string exists, defaulting to EEG, when there is no prefix or the prefix is
not recognized.
The following prefix strings are mapped to MNE internal types:
- 'EEG': 'eeg'
- 'SEEG': 'seeg'
- 'ECOG': 'ecog'
- 'DBS': 'dbs'
- 'EOG': 'eog'
- 'ECG': 'ecg'
- 'EMG': 'emg'
- 'BIO': 'bio'
- 'RESP': 'resp'
- 'MISC': 'misc'
- 'SAO2': 'bio'
The EDF specification allows storage of subseconds in measurement date.
However, this reader currently sets subseconds to 0 by default.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != "edf":
raise NotImplementedError(f"Only EDF files are supported, got {ext}.")
return RawEDF(
input_fname=input_fname,
eog=eog,
misc=misc,
stim_channel=stim_channel,
exclude=exclude,
infer_types=infer_types,
preload=preload,
include=include,
units=units,
encoding=encoding,
exclude_after_unique=exclude_after_unique,
verbose=verbose,
)
@fill_doc
def read_raw_bdf(
input_fname,
eog=None,
misc=None,
stim_channel="auto",
exclude=(),
infer_types=False,
include=None,
preload=False,
units=None,
encoding="utf8",
exclude_after_unique=False,
*,
verbose=None,
) -> RawEDF:
"""Reader function for BDF files.
Parameters
----------
input_fname : path-like
Path to the BDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : ``'auto'`` | str | list of str | int | list of int
Defaults to ``'auto'``, which means that channels named ``'status'`` or
``'trigger'`` (case insensitive) are set to STIM. If str (or list of
str), all channels matching the name(s) are set to STIM. If int (or
list of ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(exclude_after_unique)s
%(verbose)s
Returns
-------
raw : instance of RawEDF
The raw instance.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
mne.io.read_raw_gdf : Reader function for GDF files.
mne.io.Raw : Documentation of attributes and methods of RawEDF.
Notes
-----
:class:`mne.io.Raw` only stores signals with matching sampling frequencies.
Therefore, if mixed sampling frequency signals are requested, all signals
are upsampled to the highest loaded sampling frequency. In this case, using
preload=True is recommended, as otherwise, edge artifacts appear when
slices of the signal are requested.
Biosemi devices trigger codes are encoded in 16-bit format, whereas system
codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] &= (2**16 - 1) # doctest:+SKIP
The above operation can be carried out directly in :func:`mne.find_events`
using the ``mask`` and ``mask_type`` parameters (see
:func:`mne.find_events` for more details).
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE. In case it is necessary, for instance to
check the CMS bit, the following operation can be carried out:
>>> cms_bit = 20 # doctest:+SKIP
>>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0 # doctest:+SKIP
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'BDF Annotations' are parsed and extracted annotations
are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
obtain events from these annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != "bdf":
raise NotImplementedError(f"Only BDF files are supported, got {ext}.")
return RawEDF(
input_fname=input_fname,
eog=eog,
misc=misc,
stim_channel=stim_channel,
exclude=exclude,
infer_types=infer_types,
preload=preload,
include=include,
units=units,
encoding=encoding,
exclude_after_unique=exclude_after_unique,
verbose=verbose,
)
@fill_doc
def read_raw_gdf(
input_fname,
eog=None,
misc=None,
stim_channel="auto",
exclude=(),
include=None,
preload=False,
verbose=None,
) -> RawGDF:
"""Reader function for GDF files.
Parameters
----------
input_fname : path-like
Path to the GDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : ``'auto'`` | str | list of str | int | list of int
Defaults to ``'auto'``, which means that channels named ``'status'`` or
``'trigger'`` (case insensitive) are set to STIM. If str (or list of
str), all channels matching the name(s) are set to STIM. If int (or
list of ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawGDF
The raw instance.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
mne.io.read_raw_bdf : Reader function for BDF files.
mne.io.Raw : Documentation of attributes and methods of RawGDF.
Notes
-----
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != "gdf":
raise NotImplementedError(f"Only GDF files are supported, got {ext}.")
return RawGDF(
input_fname=input_fname,
eog=eog,
misc=misc,
stim_channel=stim_channel,
exclude=exclude,
preload=preload,
include=include,
verbose=verbose,
)
@fill_doc
def _read_annotations_edf(annotations, ch_names=None, encoding="utf8"):
"""Annotation File Reader.
Parameters
----------
annotations : ndarray (n_chans, n_samples) | str
Channel data in EDF+ TAL format or path to annotation file.
ch_names : list of string
List of channels' names.
%(encoding_edf)s
Returns
-------
annot : instance of Annotations
The annotations.
"""
pat = "([+-]\\d+\\.?\\d*)(\x15(\\d+\\.?\\d*))?(\x14.*?)\x14\x00"
if isinstance(annotations, str | Path):
with open(annotations, "rb") as annot_file:
triggers = re.findall(pat.encode(), annot_file.read())
triggers = [tuple(map(lambda x: x.decode(encoding), t)) for t in triggers]
else:
tals = bytearray()
annotations = np.atleast_2d(annotations)
for chan in annotations:
this_chan = chan.ravel()
if this_chan.dtype == INT32: # BDF
this_chan = this_chan.view(dtype=UINT8)
this_chan = this_chan.reshape(-1, 4)
# Why only keep the first 3 bytes as BDF values
# are stored with 24 bits (not 32)
this_chan = this_chan[:, :3].ravel()
# As ravel() returns a 1D array we can add all values at once
tals.extend(this_chan)
else:
this_chan = chan.astype(np.int64)
# Exploit np vectorized processing
tals.extend(np.uint8([this_chan % 256, this_chan // 256]).flatten("F"))
try:
triggers = re.findall(pat, tals.decode(encoding))
except UnicodeDecodeError as e:
raise Exception(
"Encountered invalid byte in at least one annotations channel."
" You might want to try setting \"encoding='latin1'\"."
) from e
events = {}
offset = 0.0
for k, ev in enumerate(triggers):
onset = float(ev[0]) + offset
duration = float(ev[2]) if ev[2] else 0
for description in ev[3].split("\x14")[1:]:
if description:
if (
"@@" in description
and ch_names is not None
and description.split("@@")[1] in ch_names
):
description, ch_name = description.split("@@")
key = f"{onset}_{duration}_{description}"
else:
ch_name = None
key = f"{onset}_{duration}_{description}"
if key in events:
key += f"_{k}" # make key unique
if key in events and ch_name:
events[key][3] += (ch_name,)
else:
events[key] = [
onset,
duration,
description,
(ch_name,) if ch_name else (),
]
elif k == 0:
# The startdate/time of a file is specified in the EDF+ header
# fields 'startdate of recording' and 'starttime of recording'.
# These fields must indicate the absolute second in which the
# start of the first data record falls. So, the first TAL in
# the first data record always starts with +0.X, indicating
# that the first data record starts a fraction, X, of a second
# after the startdate/time that is specified in the EDF+
# header. If X=0, then the .X may be omitted.
offset = -onset
if events:
onset, duration, description, annot_ch_names = zip(*events.values())
else:
onset, duration, description, annot_ch_names = list(), list(), list(), list()
assert len(onset) == len(duration) == len(description) == len(annot_ch_names)
return Annotations(
onset=onset,
duration=duration,
description=description,
orig_time=None,
ch_names=annot_ch_names,
)
def _get_annotations_gdf(edf_info, sfreq):
onset, duration, desc = list(), list(), list()
events = edf_info.get("events", None)
# Annotations in GDF: events are stored as the following
# list: `events = [n_events, pos, typ, chn, dur]` where pos is the
# latency, dur is the duration in samples. They both are
# numpy.ndarray
if events is not None and events[1].shape[0] > 0:
onset = events[1] / sfreq
duration = events[4] / sfreq
desc = events[2]
return onset, duration, desc