[074d3d]: / mne / io / ctf / res4.py

Download this file

233 lines (202 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""Read .res4 files."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os.path as op
import numpy as np
from ...utils import logger
from .constants import CTF
def _make_ctf_name(directory, extra, raise_error=True):
"""Make a CTF name."""
fname = op.join(directory, op.basename(directory)[:-3] + "." + extra)
found = True
if not op.isfile(fname):
if raise_error:
raise OSError(f"Standard file {fname} not found")
found = False
return fname, found
def _read_double(fid, n=1):
"""Read a double."""
return np.fromfile(fid, ">f8", n)
def _read_string(fid, n_bytes, decode=True):
"""Read string."""
s0 = fid.read(n_bytes)
s = s0.split(b"\x00")[0]
return s.decode("utf-8") if decode else s
def _read_ustring(fid, n_bytes):
"""Read unsigned character string."""
return np.fromfile(fid, ">B", n_bytes)
def _read_int2(fid):
"""Read int from short."""
return _auto_cast(np.fromfile(fid, ">i2", 1)[0])
def _read_int(fid):
"""Read a 32-bit integer."""
return np.fromfile(fid, ">i4", 1)[0]
def _move_to_next(fid, byte=8):
"""Move to next byte boundary."""
now = fid.tell()
if now % byte != 0:
now = now - (now % byte) + byte
fid.seek(now, 0)
def _read_filter(fid):
"""Read filter information."""
f = dict()
f["freq"] = _read_double(fid)[0]
f["class"] = _read_int(fid)
f["type"] = _read_int(fid)
f["npar"] = _read_int2(fid)
f["pars"] = _read_double(fid, f["npar"])
return f
def _read_comp_coeff(fid, d):
"""Read compensation coefficients."""
# Read the coefficients and initialize
d["ncomp"] = _read_int2(fid)
d["comp"] = list()
# Read each record
dt = np.dtype(
[
("sensor_name", "S32"),
("coeff_type", ">i4"),
("d0", ">i4"),
("ncoeff", ">i2"),
("sensors", f"S{CTF.CTFV_SENSOR_LABEL}", CTF.CTFV_MAX_BALANCING),
("coeffs", ">f8", CTF.CTFV_MAX_BALANCING),
]
)
comps = np.fromfile(fid, dt, d["ncomp"])
for k in range(d["ncomp"]):
comp = dict()
d["comp"].append(comp)
comp["sensor_name"] = comps["sensor_name"][k].split(b"\x00")[0].decode("utf-8")
comp["coeff_type"] = comps["coeff_type"][k].item()
comp["ncoeff"] = comps["ncoeff"][k].item()
comp["sensors"] = [
s.split(b"\x00")[0].decode("utf-8")
for s in comps["sensors"][k][: comp["ncoeff"]]
]
comp["coeffs"] = comps["coeffs"][k][: comp["ncoeff"]]
comp["scanno"] = d["ch_names"].index(comp["sensor_name"])
def _read_res4(dsdir):
"""Read the magical res4 file."""
# adapted from read_res4.c
name, _ = _make_ctf_name(dsdir, "res4")
res = dict()
with open(name, "rb") as fid:
# Read the fields
res["head"] = _read_string(fid, 8)
res["appname"] = _read_string(fid, 256)
res["origin"] = _read_string(fid, 256)
res["desc"] = _read_string(fid, 256)
res["nave"] = _read_int2(fid)
res["data_time"] = _read_string(fid, 255)
res["data_date"] = _read_string(fid, 255)
# Seems that date and time can be swapped
# (are they entered manually?!)
if "/" in res["data_time"] and ":" in res["data_date"]:
data_date = res["data_date"]
res["data_date"] = res["data_time"]
res["data_time"] = data_date
res["nsamp"] = _read_int(fid)
res["nchan"] = _read_int2(fid)
_move_to_next(fid, 8)
res["sfreq"] = _read_double(fid)[0]
res["epoch_time"] = _read_double(fid)[0]
res["no_trials"] = _read_int2(fid)
_move_to_next(fid, 4)
res["pre_trig_pts"] = _read_int(fid)
res["no_trials_done"] = _read_int2(fid)
res["no_trials_bst_message_windowlay"] = _read_int2(fid)
_move_to_next(fid, 4)
res["save_trials"] = _read_int(fid)
res["primary_trigger"] = fid.read(1)
res["secondary_trigger"] = [
fid.read(1) for k in range(CTF.CTFV_MAX_AVERAGE_BINS)
]
res["trigger_polarity_mask"] = fid.read(1)
res["trigger_mode"] = _read_int2(fid)
_move_to_next(fid, 4)
res["accept_reject"] = _read_int(fid)
res["run_time_bst_message_windowlay"] = _read_int2(fid)
_move_to_next(fid, 4)
res["zero_head"] = _read_int(fid)
_move_to_next(fid, 4)
res["artifact_mode"] = _read_int(fid)
_read_int(fid) # padding
res["nf_run_name"] = _read_string(fid, 32)
res["nf_run_title"] = _read_string(fid, 256)
res["nf_instruments"] = _read_string(fid, 32)
res["nf_collect_descriptor"] = _read_string(fid, 32)
res["nf_subject_id"] = _read_string(fid, 32)
res["nf_operator"] = _read_string(fid, 32)
if len(res["nf_operator"]) == 0:
res["nf_operator"] = None
res["nf_sensor_file_name"] = _read_ustring(fid, 60)
_move_to_next(fid, 4)
res["rdlen"] = _read_int(fid)
fid.seek(CTF.FUNNY_POS, 0)
if res["rdlen"] > 0:
res["run_desc"] = _read_string(fid, res["rdlen"])
# Filters
res["nfilt"] = _read_int2(fid)
res["filters"] = list()
for k in range(res["nfilt"]):
res["filters"].append(_read_filter(fid))
# Channel information (names, then data)
res["ch_names"] = list()
for k in range(res["nchan"]):
ch_name = _read_string(fid, 32)
res["ch_names"].append(ch_name)
_coil_dt = np.dtype(
[
("pos", ">f8", 3),
("d0", ">f8"),
("norm", ">f8", 3),
("d1", ">f8"),
("turns", ">i2"),
("d2", ">i4"),
("d3", ">i2"),
("area", ">f8"),
]
)
_ch_dt = np.dtype(
[
("sensor_type_index", ">i2"),
("original_run_no", ">i2"),
("coil_type", ">i4"),
("proper_gain", ">f8"),
("qgain", ">f8"),
("io_gain", ">f8"),
("io_offset", ">f8"),
("num_coils", ">i2"),
("grad_order_no", ">i2"),
("d0", ">i4"),
("coil", _coil_dt, CTF.CTFV_MAX_COILS),
("head_coil", _coil_dt, CTF.CTFV_MAX_COILS),
]
)
chs = np.fromfile(fid, _ch_dt, res["nchan"])
for coil in (chs["coil"], chs["head_coil"]):
coil["pos"] /= 100.0
coil["area"] *= 1e-4
# convert to dict
chs = [dict(zip(chs.dtype.names, x)) for x in chs]
for ch in chs:
for key, val in ch.items():
ch[key] = _auto_cast(val)
res["chs"] = chs
for k in range(res["nchan"]):
res["chs"][k]["ch_name"] = res["ch_names"][k]
# The compensation coefficients
_read_comp_coeff(fid, res)
logger.info(" res4 data read.")
return res
def _auto_cast(x):
# Upcast scalars
if isinstance(x, np.ScalarType):
if x.dtype.kind == "i":
if x.dtype != np.int64:
x = x.astype(np.int64)
elif x.dtype.kind == "f":
if x.dtype != np.float64:
x = x.astype(np.float64)
return x