[074d3d]: / mne / io / base.py

Download this file

3245 lines (2890 with data), 113.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import shutil
from collections import defaultdict
from contextlib import nullcontext
from copy import deepcopy
from dataclasses import dataclass, field
from datetime import timedelta
from inspect import getfullargspec
from pathlib import Path
import numpy as np
from .._fiff.compensator import make_compensator, set_current_comp
from .._fiff.constants import FIFF
from .._fiff.meas_info import (
ContainsMixin,
SetChannelsMixin,
_ensure_infos_match,
_unit2human,
write_meas_info,
)
from .._fiff.pick import (
_picks_to_idx,
channel_type,
pick_channels,
pick_info,
pick_types,
)
from .._fiff.proj import ProjMixin, _proj_equal, activate_proj, setup_proj
from .._fiff.utils import _check_orig_units, _make_split_fnames
from .._fiff.write import (
_NEXT_FILE_BUFFER,
_get_split_size,
end_block,
start_and_end_file,
start_block,
write_complex64,
write_complex128,
write_dau_pack16,
write_double,
write_float,
write_id,
write_int,
write_string,
)
from ..annotations import (
Annotations,
_annotations_starts_stops,
_combine_annotations,
_handle_meas_date,
_sync_onset,
_write_annotations,
)
from ..channels.channels import InterpolationMixin, ReferenceMixin, UpdateChannelsMixin
from ..defaults import _handle_default
from ..event import concatenate_events, find_events
from ..filter import (
FilterMixin,
_check_fun,
_check_resamp_noop,
_resamp_ratio_len,
_resample_stim_channels,
notch_filter,
resample,
)
from ..html_templates import _get_html_template
from ..parallel import parallel_func
from ..time_frequency.spectrum import Spectrum, SpectrumMixin, _validate_method
from ..time_frequency.tfr import RawTFR
from ..utils import (
SizeMixin,
TimeMixin,
_arange_div,
_build_data_frame,
_check_fname,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_preload,
_check_time_format,
_convert_times,
_file_like,
_get_argvalues,
_get_stim_channel,
_pl,
_scale_dataframe_data,
_stamp_to_dt,
_time_mask,
_validate_type,
check_fname,
copy_doc,
copy_function_doc_to_method_doc,
fill_doc,
logger,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from ..viz import _RAW_CLIP_DEF, plot_raw
@fill_doc
class BaseRaw(
ProjMixin,
ContainsMixin,
UpdateChannelsMixin,
ReferenceMixin,
SetChannelsMixin,
InterpolationMixin,
TimeMixin,
SizeMixin,
FilterMixin,
SpectrumMixin,
):
"""Base class for Raw data.
Parameters
----------
%(info_not_none)s
preload : bool | str | ndarray
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory). If preload is an
ndarray, the data are taken from that array. If False, data are not
read until save.
first_samps : iterable
Iterable of the first sample number from each raw file. For unsplit raw
files this should be a length-one list or tuple.
last_samps : iterable | None
Iterable of the last sample number from each raw file. For unsplit raw
files this should be a length-one list or tuple. If None, then preload
must be an ndarray.
filenames : tuple | None
Tuple of length one (for unsplit raw files) or length > 1 (for split
raw files).
raw_extras : list of dict
The data necessary for on-demand reads for the given reader format.
Should be the same length as ``filenames``. Will have the entry
``raw_extras['orig_nchan']`` added to it for convenience.
orig_format : str
The data format of the original raw file (e.g., ``'double'``).
dtype : dtype | None
The dtype of the raw data. If preload is an ndarray, its dtype must
match what is passed here.
buffer_size_sec : float
The buffer size in seconds that should be written by default using
:meth:`mne.io.Raw.save`.
orig_units : dict | None
Dictionary mapping channel names to their units as specified in
the header file. Example: {'FC1': 'nV'}.
.. versionadded:: 0.17
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
Notes
-----
This class is public to allow for stable type-checking in user
code (i.e., ``isinstance(my_raw_object, BaseRaw)``) but should not be used
as a constructor for `Raw` objects (use instead one of the subclass
constructors, or one of the ``mne.io.read_raw_*`` functions).
Subclasses must provide the following methods:
* _read_segment_file(self, data, idx, fi, start, stop, cals, mult)
(only needed for types that support on-demand disk reads)
"""
# NOTE: If you add a new attribute to this class and get a Sphinx warning like:
# docstring of mne.io.base.BaseRaw:71:
# WARNING: py:obj reference target not found: duration [ref.obj]
# You need to add the attribute to doc/conf.py nitpick_ignore_regex. You should also
# consider adding it to the Attributes list for Raw in mne/io/fiff/raw.py.
_extra_attributes = ()
@verbose
def __init__(
self,
info,
preload=False,
first_samps=(0,),
last_samps=None,
filenames=None,
raw_extras=(None,),
orig_format="double",
dtype=np.float64,
buffer_size_sec=1.0,
orig_units=None,
*,
verbose=None,
):
# wait until the end to preload data, but triage here
if isinstance(preload, np.ndarray):
# some functions (e.g., filtering) only work w/64-bit data
if preload.dtype not in (np.float64, np.complex128):
raise RuntimeError(
f"datatype must be float64 or complex128, not {preload.dtype}"
)
if preload.dtype != dtype:
raise ValueError("preload and dtype must match")
self._data = preload
self.preload = True
assert len(first_samps) == 1
last_samps = [first_samps[0] + self._data.shape[1] - 1]
load_from_disk = False
else:
if last_samps is None:
raise ValueError(
"last_samps must be given unless preload is an ndarray"
)
if not preload:
self.preload = False
load_from_disk = False
else:
load_from_disk = True
self._last_samps = np.array(last_samps)
self._first_samps = np.array(first_samps)
orig_ch_names = info["ch_names"]
with info._unlock(check_after=True):
# be permissive of old code
if isinstance(info["meas_date"], tuple):
info["meas_date"] = _stamp_to_dt(info["meas_date"])
self.info = info
self.buffer_size_sec = float(buffer_size_sec)
cals = np.empty(info["nchan"])
for k in range(info["nchan"]):
cals[k] = info["chs"][k]["range"] * info["chs"][k]["cal"]
bad = np.where(cals == 0)[0]
if len(bad) > 0:
raise ValueError(
f"Bad cals for channels {dict((ii, self.ch_names[ii]) for ii in bad)}"
)
self._cals = cals
if raw_extras is None:
raw_extras = [None] * len(first_samps)
self._raw_extras = list(dict() if r is None else r for r in raw_extras)
for r in self._raw_extras:
r["orig_nchan"] = info["nchan"]
self._read_picks = [np.arange(info["nchan"]) for _ in range(len(raw_extras))]
# deal with compensation (only relevant for CTF data, either CTF
# reader or MNE-C converted CTF->FIF files)
self._read_comp_grade = self.compensation_grade # read property
if self._read_comp_grade is not None and len(info["comps"]):
logger.info("Current compensation grade : %d", self._read_comp_grade)
self._comp = None
if filenames is None:
filenames = [None] * len(first_samps)
self.filenames = list(filenames)
_validate_type(orig_format, str, "orig_format")
_check_option("orig_format", orig_format, ("double", "single", "int", "short"))
self.orig_format = orig_format
# Sanity check and set original units, if provided by the reader:
if orig_units:
if not isinstance(orig_units, dict):
raise ValueError(
f"orig_units must be of type dict, but got {type(orig_units)}"
)
# original units need to be truncated to 15 chars or renamed
# to match MNE conventions (channel name unique and less than
# 15 characters).
orig_units = deepcopy(orig_units)
for old_ch, new_ch in zip(orig_ch_names, info["ch_names"]):
if old_ch in orig_units:
this_unit = orig_units[old_ch]
del orig_units[old_ch]
orig_units[new_ch] = this_unit
# STI 014 channel is native only to fif ... for all other formats
# this was artificially added by the IO procedure, so remove it
ch_names = list(info["ch_names"])
if "STI 014" in ch_names and self.filenames[0].suffix != ".fif":
ch_names.remove("STI 014")
# Each channel in the data must have a corresponding channel in
# the original units.
ch_correspond = [ch in orig_units for ch in ch_names]
if not all(ch_correspond):
ch_without_orig_unit = ch_names[ch_correspond.index(False)]
raise ValueError(
f"Channel {ch_without_orig_unit} has no associated original unit."
)
# Final check of orig_units, editing a unit if it is not a valid
# unit
orig_units = _check_orig_units(orig_units)
self._orig_units = orig_units or dict() # always a dict
self._projector = None
self._dtype_ = dtype
self.set_annotations(None)
self._cropped_samp = first_samps[0]
# If we have True or a string, actually do the preloading
if load_from_disk:
self._preload_data(preload)
self._init_kwargs = _get_argvalues()
@verbose
def apply_gradient_compensation(self, grade, verbose=None):
"""Apply CTF gradient compensation.
.. warning:: The compensation matrices are stored with single
precision, so repeatedly switching between different
of compensation (e.g., 0->1->3->2) can increase
numerical noise, especially if data are saved to
disk in between changing grades. It is thus best to
only use a single gradient compensation level in
final analyses.
Parameters
----------
grade : int
CTF gradient compensation level.
%(verbose)s
Returns
-------
raw : instance of Raw
The modified Raw instance. Works in-place.
"""
grade = int(grade)
current_comp = self.compensation_grade
if current_comp != grade:
if self.proj:
raise RuntimeError(
"Cannot change compensation on data where projectors have been "
"applied."
)
# Figure out what operator to use (varies depending on preload)
from_comp = current_comp if self.preload else self._read_comp_grade
comp = make_compensator(self.info, from_comp, grade)
logger.info(
"Compensator constructed to change %d -> %d", current_comp, grade
)
set_current_comp(self.info, grade)
# We might need to apply it to our data now
if self.preload:
logger.info("Applying compensator to loaded data")
lims = np.concatenate(
[np.arange(0, len(self.times), 10000), [len(self.times)]]
)
for start, stop in zip(lims[:-1], lims[1:]):
self._data[:, start:stop] = np.dot(comp, self._data[:, start:stop])
else:
self._comp = comp # store it for later use
return self
@property
def _dtype(self):
"""Datatype for loading data (property so subclasses can override)."""
# most classes only store real data, they won't need anything special
return self._dtype_
@verbose
def _read_segment(
self, start=0, stop=None, sel=None, data_buffer=None, *, verbose=None
):
"""Read a chunk of raw data.
Parameters
----------
start : int, (optional)
first sample to include (first is 0). If omitted, defaults to the
first sample in data.
stop : int, (optional)
First sample to not include.
If omitted, data is included to the end.
sel : array, optional
Indices of channels to select.
data_buffer : array or str, optional
numpy array to fill with data read, must have the correct shape.
If str, a np.memmap with the correct data type will be used
to store the data.
projector : array
SSP operator to apply to the data.
%(verbose)s
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
"""
# Initial checks
start = int(start)
stop = self.n_times if stop is None else min([int(stop), self.n_times])
if start >= stop:
raise ValueError("No data in this range")
# Initialize the data and calibration vector
if sel is None:
n_out = self.info["nchan"]
idx = slice(None)
else:
n_out = len(sel)
idx = _convert_slice(sel)
del sel
assert n_out <= self.info["nchan"]
data_shape = (n_out, stop - start)
dtype = self._dtype
if isinstance(data_buffer, np.ndarray):
if data_buffer.shape != data_shape:
raise ValueError(
f"data_buffer has incorrect shape: "
f"{data_buffer.shape} != {data_shape}"
)
data = data_buffer
else:
data = _allocate_data(data_buffer, data_shape, dtype)
# deal with having multiple files accessed by the raw object
cumul_lens = np.concatenate(([0], np.array(self._raw_lengths, dtype="int")))
cumul_lens = np.cumsum(cumul_lens)
files_used = np.logical_and(
np.less(start, cumul_lens[1:]), np.greater_equal(stop - 1, cumul_lens[:-1])
)
# set up cals and mult (cals, compensation, and projector)
n_out = len(np.arange(len(self.ch_names))[idx])
cals = self._cals.ravel()
projector, comp = self._projector, self._comp
if comp is not None:
mult = comp
if projector is not None:
mult = projector @ mult
else:
mult = projector
del projector, comp
if mult is None:
cals = cals[idx, np.newaxis]
assert cals.shape == (n_out, 1)
need_idx = idx # sufficient just to read the given channels
else:
mult = mult[idx] * cals
cals = None # shouldn't be used
assert mult.shape == (n_out, len(self.ch_names))
# read all necessary for proj
need_idx = np.where(np.any(mult, axis=0))[0]
mult = mult[:, need_idx]
logger.debug(
f"Reading {len(need_idx)}/{len(self.ch_names)} channels "
f"due to projection"
)
assert (mult is None) ^ (cals is None) # xor
# read from necessary files
offset = 0
for fi in np.nonzero(files_used)[0]:
start_file = self._first_samps[fi]
# first iteration (only) could start in the middle somewhere
if offset == 0:
start_file += start - cumul_lens[fi]
stop_file = np.min(
[
stop - cumul_lens[fi] + self._first_samps[fi],
self._last_samps[fi] + 1,
]
)
if start_file < self._first_samps[fi] or stop_file < start_file:
raise ValueError("Bad array indexing, could be a bug")
n_read = stop_file - start_file
this_sl = slice(offset, offset + n_read)
# reindex back to original file
orig_idx = _convert_slice(self._read_picks[fi][need_idx])
_ReadSegmentFileProtector(self)._read_segment_file(
data[:, this_sl],
orig_idx,
fi,
int(start_file),
int(stop_file),
cals,
mult,
)
offset += n_read
return data
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file.
Only needs to be implemented for readers that support
``preload=False``. Any implementation should only make use of:
- self._raw_extras[fi]
- self.filenames[fi]
So be sure to store any information necessary for reading raw data
in self._raw_extras[fi]. Things like ``info`` can be decoupled
from the original data (e.g., different subsets of channels) due
to picking before preload, for example.
Parameters
----------
data : ndarray, shape (n_out, stop - start + 1)
The data array. Should be modified inplace.
idx : ndarray | slice
The requested channel indices.
fi : int
The file index that must be read from.
start : int
The start sample in the given file.
stop : int
The stop sample in the given file (inclusive).
cals : ndarray, shape (len(idx), 1)
Channel calibrations (already sub-indexed).
mult : ndarray, shape (n_out, len(idx) | None
The compensation + projection + cals matrix, if applicable.
"""
raise NotImplementedError
def _check_bad_segment(
self, start, stop, picks, reject_start, reject_stop, reject_by_annotation=False
):
"""Check if data segment is bad.
If the slice is good, returns the data in desired range.
If rejected based on annotation, returns description of the
bad segment as a string.
Parameters
----------
start : int
First sample of the slice.
stop : int
End of the slice.
picks : array of int
Channel picks.
reject_start : int
First sample to check for overlaps with bad annotations.
reject_stop : int
Last sample to check for overlaps with bad annotations.
reject_by_annotation : bool
Whether to perform rejection based on annotations.
False by default.
Returns
-------
data : array | str
Data in the desired range (good segment) or description of the bad
segment.
"""
if start < 0:
return None
if reject_by_annotation and len(self.annotations) > 0:
annot = self.annotations
sfreq = self.info["sfreq"]
onset = _sync_onset(self, annot.onset)
overlaps = np.where(onset < reject_stop / sfreq)
overlaps = np.where(
onset[overlaps] + annot.duration[overlaps] > reject_start / sfreq
)
for descr in annot.description[overlaps]:
if descr.lower().startswith("bad"):
return descr
return self._getitem((picks, slice(start, stop)), return_times=False)
@verbose
def load_data(self, verbose=None):
"""Load raw data.
Parameters
----------
%(verbose)s
Returns
-------
raw : instance of Raw
The raw object with data.
Notes
-----
This function will load raw data if it was not already preloaded.
If data were already preloaded, it will do nothing.
.. versionadded:: 0.10.0
"""
if not self.preload:
self._preload_data(True)
return self
def _preload_data(self, preload):
"""Actually preload the data."""
data_buffer = preload
if isinstance(preload, bool | np.bool_) and not preload:
data_buffer = None
t = self.times
logger.info(
f"Reading 0 ... {len(t) - 1} = {0.0:9.3f} ... {t[-1]:9.3f} secs..."
)
self._data = self._read_segment(data_buffer=data_buffer)
assert len(self._data) == self.info["nchan"]
self.preload = True
self._comp = None # no longer needed
self.close()
@property
def _first_time(self):
return self.first_samp / float(self.info["sfreq"])
@property
def first_samp(self):
"""The first data sample.
See :term:`first_samp`.
"""
return self._cropped_samp
@property
def first_time(self):
"""The first time point (including first_samp but not meas_date)."""
return self._first_time
@property
def last_samp(self):
"""The last data sample."""
return self.first_samp + sum(self._raw_lengths) - 1
@property
def _last_time(self):
return self.last_samp / float(self.info["sfreq"])
def time_as_index(self, times, use_rounding=False, origin=None):
"""Convert time to indices.
Parameters
----------
times : list-like | float | int
List of numbers or a number representing points in time.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
origin : datetime | float | int | None
Time reference for times. If None, ``times`` are assumed to be
relative to :term:`first_samp`.
.. versionadded:: 0.17.0
Returns
-------
index : ndarray
Indices relative to :term:`first_samp` corresponding to the times
supplied.
"""
origin = _handle_meas_date(origin)
if origin is None:
delta = 0
elif self.info["meas_date"] is None:
raise ValueError(
f'origin must be None when info["meas_date"] is None, got {origin}'
)
else:
first_samp_in_abs_time = self.info["meas_date"] + timedelta(
0, self._first_time
)
delta = (origin - first_samp_in_abs_time).total_seconds()
times = np.atleast_1d(times) + delta
return super().time_as_index(times, use_rounding)
@property
def _raw_lengths(self):
return [
last - first + 1 for first, last in zip(self._first_samps, self._last_samps)
]
@property
def annotations(self): # noqa: D401
""":class:`~mne.Annotations` for marking segments of data."""
return self._annotations
@property
def filenames(self) -> tuple[Path | None, ...]:
"""The filenames used.
:type: :class:`tuple` of :class:`pathlib.Path` | ``None``
"""
return tuple(self._filenames)
@filenames.setter
def filenames(self, value):
"""The filenames used, cast to list of paths.""" # noqa: D401
_validate_type(value, (list, tuple), "filenames")
if isinstance(value, tuple):
value = list(value)
for k, elt in enumerate(value):
if elt is not None:
value[k] = _check_fname(elt, overwrite="read", must_exist=False)
if not value[k].exists():
# check existence separately from _check_fname since some
# fileformats use directories instead of files and '_check_fname'
# does not handle it correctly.
raise FileNotFoundError(f"File {value[k]} not found.")
self._filenames = list(value)
@verbose
def set_annotations(
self, annotations, emit_warning=True, on_missing="raise", *, verbose=None
):
"""Setter for annotations.
This setter checks if they are inside the data range.
Parameters
----------
annotations : instance of mne.Annotations | None
Annotations to set. If None, the annotations is defined
but empty.
%(emit_warning)s
The default is True.
%(on_missing_ch_names)s
%(verbose)s
Returns
-------
self : instance of Raw
The raw object with annotations.
"""
meas_date = _handle_meas_date(self.info["meas_date"])
if annotations is None:
self._annotations = Annotations([], [], [], meas_date)
else:
_validate_type(annotations, Annotations, "annotations")
if meas_date is None and annotations.orig_time is not None:
raise RuntimeError(
"Ambiguous operation. Setting an Annotation object with known "
"``orig_time`` to a raw object which has ``meas_date`` set to None "
"is ambiguous. Please, either set a meaningful ``meas_date`` to "
"the raw object; or set ``orig_time`` to None in which case the "
"annotation onsets would be taken in reference to the first sample "
"of the raw object."
)
delta = 1.0 / self.info["sfreq"]
new_annotations = annotations.copy()
new_annotations._prune_ch_names(self.info, on_missing)
if annotations.orig_time is None:
new_annotations.crop(
0, self.times[-1] + delta, emit_warning=emit_warning
)
new_annotations.onset += self._first_time
else:
tmin = meas_date + timedelta(0, self._first_time)
tmax = tmin + timedelta(seconds=self.times[-1] + delta)
new_annotations.crop(tmin=tmin, tmax=tmax, emit_warning=emit_warning)
new_annotations.onset -= (
meas_date - new_annotations.orig_time
).total_seconds()
new_annotations._orig_time = meas_date
self._annotations = new_annotations
return self
def __del__(self): # noqa: D105
# remove file for memmap
if hasattr(self, "_data") and getattr(self._data, "filename", None) is not None:
# First, close the file out; happens automatically on del
filename = self._data.filename
del self._data
# Now file can be removed
try:
os.remove(filename)
except OSError:
pass # ignore file that no longer exists
def __enter__(self):
"""Entering with block."""
return self
def __exit__(self, exception_type, exception_val, trace):
"""Exit with block."""
try:
self.close()
except Exception:
return exception_type, exception_val, trace
def _parse_get_set_params(self, item):
"""Parse the __getitem__ / __setitem__ tuples."""
# make sure item is a tuple
if not isinstance(item, tuple): # only channel selection passed
item = (item, slice(None, None, None))
if len(item) != 2: # should be channels and time instants
raise RuntimeError(
"Unable to access raw data (need both channels and time)"
)
sel = _picks_to_idx(self.info, item[0])
if isinstance(item[1], slice):
time_slice = item[1]
start, stop, step = (time_slice.start, time_slice.stop, time_slice.step)
else:
item1 = item[1]
# Let's do automated type conversion to integer here
if np.array(item[1]).dtype.kind == "i":
item1 = int(item1)
if isinstance(item1, int | np.integer):
start, stop, step = item1, item1 + 1, 1
# Need to special case -1, because -1:0 will be empty
if start == -1:
stop = None
else:
raise ValueError("Must pass int or slice to __getitem__")
if start is None:
start = 0
if step is not None and step != 1:
raise ValueError(f"step needs to be 1 : {step} given")
if isinstance(sel, int | np.integer):
sel = np.array([sel])
if sel is not None and len(sel) == 0:
raise ValueError("Empty channel list")
return sel, start, stop
def __getitem__(self, item):
"""Get raw data and times.
Parameters
----------
item : tuple or array-like
See below for use cases.
Returns
-------
data : ndarray, shape (n_channels, n_times)
The raw data.
times : ndarray, shape (n_times,)
The times associated with the data.
Examples
--------
Generally raw data is accessed as::
>>> data, times = raw[picks, time_slice] # doctest: +SKIP
To get all data, you can thus do either of::
>>> data, times = raw[:] # doctest: +SKIP
Which will be equivalent to:
>>> data, times = raw[:, :] # doctest: +SKIP
To get only the good MEG data from 10-20 seconds, you could do::
>>> picks = mne.pick_types(raw.info, meg=True, exclude='bads') # doctest: +SKIP
>>> t_idx = raw.time_as_index([10., 20.]) # doctest: +SKIP
>>> data, times = raw[picks, t_idx[0]:t_idx[1]] # doctest: +SKIP
""" # noqa: E501
return self._getitem(item)
def _getitem(self, item, return_times=True):
sel, start, stop = self._parse_get_set_params(item)
if self.preload:
data = self._data[sel, start:stop]
else:
data = self._read_segment(start=start, stop=stop, sel=sel)
if return_times:
# Rather than compute the entire thing just compute the subset
# times = self.times[start:stop]
# stop can be None here so don't use it directly
times = np.arange(start, start + data.shape[1], dtype=float)
times /= self.info["sfreq"]
return data, times
else:
return data
def __setitem__(self, item, value):
"""Set raw data content."""
_check_preload(self, "Modifying data of Raw")
sel, start, stop = self._parse_get_set_params(item)
# set the data
self._data[sel, start:stop] = value
@verbose
def get_data(
self,
picks=None,
start=0,
stop=None,
reject_by_annotation=None,
return_times=False,
units=None,
*,
tmin=None,
tmax=None,
verbose=None,
):
"""Get data in the given range.
Parameters
----------
%(picks_all)s
start : int
The first sample to include. Defaults to 0.
stop : int | None
End sample (first not to include). If None (default), the end of
the data is used.
reject_by_annotation : None | 'omit' | 'NaN'
Whether to reject by annotation. If None (default), no rejection is
done. If 'omit', segments annotated with description starting with
'bad' are omitted. If 'NaN', the bad samples are filled with NaNs.
return_times : bool
Whether to return times as well. Defaults to False.
%(units)s
tmin : int | float | None
Start time of data to get in seconds. The ``tmin`` parameter is
ignored if the ``start`` parameter is bigger than 0.
.. versionadded:: 0.24.0
tmax : int | float | None
End time of data to get in seconds. The ``tmax`` parameter is
ignored if the ``stop`` parameter is defined.
.. versionadded:: 0.24.0
%(verbose)s
Returns
-------
data : ndarray, shape (n_channels, n_times)
Copy of the data in the given range.
times : ndarray, shape (n_times,)
Times associated with the data samples. Only returned if
return_times=True.
Notes
-----
.. versionadded:: 0.14.0
"""
# validate types
_validate_type(start, types=("int-like"), item_name="start", type_name="int")
_validate_type(
stop, types=("int-like", None), item_name="stop", type_name="int, None"
)
picks = _picks_to_idx(self.info, picks, "all", exclude=())
# Get channel factors for conversion into specified unit
# (vector of ones if no conversion needed)
if units is not None:
ch_factors = _get_ch_factors(self, units, picks)
# convert to ints
picks = np.atleast_1d(np.arange(self.info["nchan"])[picks])
# handle start/tmin stop/tmax
tmin_start, tmax_stop = self._handle_tmin_tmax(tmin, tmax)
# tmin/tmax are ignored if start/stop are defined to
# something other than their defaults
start = tmin_start if start == 0 else start
stop = tmax_stop if stop is None else stop
# truncate start/stop to the open interval [0, n_times]
start = min(max(0, start), self.n_times)
stop = min(max(0, stop), self.n_times)
if len(self.annotations) == 0 or reject_by_annotation is None:
getitem = self._getitem(
(picks, slice(start, stop)), return_times=return_times
)
if return_times:
data, times = getitem
if units is not None:
data *= ch_factors[:, np.newaxis]
return data, times
if units is not None:
getitem *= ch_factors[:, np.newaxis]
return getitem
_check_option(
"reject_by_annotation", reject_by_annotation.lower(), ["omit", "nan"]
)
onsets, ends = _annotations_starts_stops(self, ["BAD"])
keep = (onsets < stop) & (ends > start)
onsets = np.maximum(onsets[keep], start)
ends = np.minimum(ends[keep], stop)
if len(onsets) == 0:
data, times = self[picks, start:stop]
if units is not None:
data *= ch_factors[:, np.newaxis]
if return_times:
return data, times
return data
n_samples = stop - start # total number of samples
used = np.ones(n_samples, bool)
for onset, end in zip(onsets, ends):
if onset >= end:
continue
used[onset - start : end - start] = False
used = np.concatenate([[False], used, [False]])
starts = np.where(~used[:-1] & used[1:])[0] + start
stops = np.where(used[:-1] & ~used[1:])[0] + start
n_kept = (stops - starts).sum() # kept samples
n_rejected = n_samples - n_kept # rejected samples
if n_rejected > 0:
if reject_by_annotation == "omit":
msg = (
"Omitting {} of {} ({:.2%}) samples, retaining {} ({:.2%}) samples."
)
logger.info(
msg.format(
n_rejected,
n_samples,
n_rejected / n_samples,
n_kept,
n_kept / n_samples,
)
)
data = np.zeros((len(picks), n_kept))
times = np.zeros(data.shape[1])
idx = 0
for start, stop in zip(starts, stops): # get the data
if start == stop:
continue
end = idx + stop - start
data[:, idx:end], times[idx:end] = self[picks, start:stop]
idx = end
else:
msg = (
"Setting {} of {} ({:.2%}) samples to NaN, retaining {}"
" ({:.2%}) samples."
)
logger.info(
msg.format(
n_rejected,
n_samples,
n_rejected / n_samples,
n_kept,
n_kept / n_samples,
)
)
data, times = self[picks, start:stop]
data[:, ~used[1:-1]] = np.nan
else:
data, times = self[picks, start:stop]
if units is not None:
data *= ch_factors[:, np.newaxis]
if return_times:
return data, times
return data
@verbose
def apply_function(
self,
fun,
picks=None,
dtype=None,
n_jobs=None,
channel_wise=True,
verbose=None,
**kwargs,
):
"""Apply a function to a subset of channels.
%(applyfun_summary_raw)s
Parameters
----------
%(fun_applyfun)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun)s
.. versionadded:: 0.18
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Raw
The raw object with transformed data.
"""
_check_preload(self, "raw.apply_function")
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError("fun needs to be a function")
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs
if channel_wise is False:
if ("ch_idx" in args) or ("ch_name" in args):
raise ValueError(
"apply_function cannot access ch_idx or ch_name "
"when channel_wise=False"
)
if "ch_idx" in args:
logger.info("apply_function requested to access ch_idx")
if "ch_name" in args:
logger.info("apply_function requested to access ch_name")
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
# modify data inplace to save memory
for ch_idx in picks:
if "ch_idx" in args:
kwargs.update(ch_idx=ch_idx)
if "ch_name" in args:
kwargs.update(ch_name=self.info["ch_names"][ch_idx])
self._data[ch_idx, :] = _check_fun(
fun, data_in[ch_idx, :], **kwargs
)
else:
# use parallel function
data_picks_new = parallel(
p_fun(
fun,
data_in[ch_idx],
**kwargs,
**{
k: v
for k, v in [
("ch_name", self.info["ch_names"][ch_idx]),
("ch_idx", ch_idx),
]
if k in args
},
)
for ch_idx in picks
)
for run_idx, ch_idx in enumerate(picks):
self._data[ch_idx, :] = data_picks_new[run_idx]
else:
self._data[picks, :] = _check_fun(fun, data_in[picks, :], **kwargs)
return self
# Need a separate method because the default pad is different for raw
@copy_doc(FilterMixin.filter)
def filter(
self,
l_freq,
h_freq,
picks=None,
filter_length="auto",
l_trans_bandwidth="auto",
h_trans_bandwidth="auto",
n_jobs=None,
method="fir",
iir_params=None,
phase="zero",
fir_window="hamming",
fir_design="firwin",
skip_by_annotation=("edge", "bad_acq_skip"),
pad="reflect_limited",
verbose=None,
):
return super().filter(
l_freq,
h_freq,
picks,
filter_length,
l_trans_bandwidth,
h_trans_bandwidth,
n_jobs=n_jobs,
method=method,
iir_params=iir_params,
phase=phase,
fir_window=fir_window,
fir_design=fir_design,
skip_by_annotation=skip_by_annotation,
pad=pad,
verbose=verbose,
)
@verbose
def notch_filter(
self,
freqs,
picks=None,
filter_length="auto",
notch_widths=None,
trans_bandwidth=1.0,
n_jobs=None,
method="fir",
iir_params=None,
mt_bandwidth=None,
p_value=0.05,
phase="zero",
fir_window="hamming",
fir_design="firwin",
pad="reflect_limited",
skip_by_annotation=("edge", "bad_acq_skip"),
verbose=None,
):
"""Notch filter a subset of channels.
Parameters
----------
freqs : float | array of float | None
Specific frequencies to filter out from data, e.g.,
``np.arange(60, 241, 60)`` in the US or ``np.arange(50, 251, 50)``
in Europe. ``None`` can only be used with the mode
``'spectrum_fit'``, where an F test is used to find sinusoidal
components.
%(picks_all_data)s
%(filter_length_notch)s
notch_widths : float | array of float | None
Width of each stop band (centred at each freq in freqs) in Hz.
If None, ``freqs / 200`` is used.
trans_bandwidth : float
Width of the transition band in Hz.
Only used for ``method='fir'`` and ``method='iir'``.
%(n_jobs_fir)s
%(method_fir)s
%(iir_params)s
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'spectrum_fit' mode.
p_value : float
P-value to use in F-test thresholding to determine significant
sinusoidal components to remove when ``method='spectrum_fit'`` and
``freqs=None``. Note that this will be Bonferroni corrected for the
number of frequencies, so large p-values may be justified.
%(phase)s
%(fir_window)s
%(fir_design)s
%(pad_fir)s
The default is ``'reflect_limited'``.
.. versionadded:: 0.15
%(skip_by_annotation)s
%(verbose)s
Returns
-------
raw : instance of Raw
The raw instance with filtered data.
See Also
--------
mne.filter.notch_filter
mne.io.Raw.filter
Notes
-----
Applies a zero-phase notch filter to the channels selected by
"picks". By default the data of the Raw object is modified inplace.
The Raw object has to have the data loaded e.g. with ``preload=True``
or ``self.load_data()``.
.. note:: If n_jobs > 1, more memory is required as
``len(picks) * n_times`` additional time points need to
be temporarily stored in memory.
For details, see :func:`mne.filter.notch_filter`.
"""
fs = float(self.info["sfreq"])
picks = _picks_to_idx(self.info, picks, exclude=(), none="data_or_ica")
_check_preload(self, "raw.notch_filter")
onsets, ends = _annotations_starts_stops(self, skip_by_annotation, invert=True)
logger.info(
"Filtering raw data in %d contiguous segment%s", len(onsets), _pl(onsets)
)
for si, (start, stop) in enumerate(zip(onsets, ends)):
notch_filter(
self._data[:, start:stop],
fs,
freqs,
filter_length=filter_length,
notch_widths=notch_widths,
trans_bandwidth=trans_bandwidth,
method=method,
iir_params=iir_params,
mt_bandwidth=mt_bandwidth,
p_value=p_value,
picks=picks,
n_jobs=n_jobs,
copy=False,
phase=phase,
fir_window=fir_window,
fir_design=fir_design,
pad=pad,
)
return self
@verbose
def resample(
self,
sfreq,
*,
npad="auto",
window="auto",
stim_picks=None,
n_jobs=None,
events=None,
pad="auto",
method="fft",
verbose=None,
):
"""Resample all channels.
If appropriate, an anti-aliasing filter is applied before resampling.
See :ref:`resampling-and-decimating` for more information.
.. warning:: The intended purpose of this function is primarily to
speed up computations (e.g., projection calculation) when
precise timing of events is not required, as downsampling
raw data effectively jitters trigger timings. It is
generally recommended not to epoch downsampled data,
but instead epoch and then downsample, as epoching
downsampled data jitters triggers.
For more, see
`this illustrative gist
<https://gist.github.com/larsoner/01642cb3789992fbca59>`_.
If resampling the continuous data is desired, it is
recommended to construct events using the original data.
The event onsets can be jointly resampled with the raw
data using the 'events' parameter (a resampled copy is
returned).
Parameters
----------
sfreq : float
New sample rate to use.
%(npad_resample)s
%(window_resample)s
stim_picks : list of int | None
Stim channels. These channels are simply subsampled or
supersampled (without applying any filtering). This reduces
resampling artifacts in stim channels, but may lead to missing
triggers. If None, stim channels are automatically chosen using
:func:`mne.pick_types`.
%(n_jobs_cuda)s
events : 2D array, shape (n_events, 3) | None
An optional event matrix. When specified, the onsets of the events
are resampled jointly with the data. NB: The input events are not
modified, but a new array is returned with the raw instead.
%(pad_resample_auto)s
.. versionadded:: 0.15
%(method_resample)s
.. versionadded:: 1.7
%(verbose)s
Returns
-------
raw : instance of Raw
The resampled version of the raw object.
events : array, shape (n_events, 3) | None
If events are jointly resampled, these are returned with the raw.
See Also
--------
mne.io.Raw.filter
mne.Epochs.resample
Notes
-----
For some data, it may be more accurate to use ``npad=0`` to reduce
artifacts. This is dataset dependent -- check your data!
For optimum performance and to make use of ``n_jobs > 1``, the raw
object has to have the data loaded e.g. with ``preload=True`` or
``self.load_data()``, but this increases memory requirements. The
resulting raw object will have the data loaded into memory.
"""
sfreq = float(sfreq)
o_sfreq = float(self.info["sfreq"])
if _check_resamp_noop(sfreq, o_sfreq):
if events is not None:
return self, events.copy()
else:
return self
# When no event object is supplied, some basic detection of dropped
# events is performed to generate a warning. Finding events can fail
# for a variety of reasons, e.g. if no stim channel is present or it is
# corrupted. This should not stop the resampling from working. The
# warning should simply not be generated in this case.
if events is None:
try:
original_events = find_events(self)
except Exception:
pass
offsets = np.concatenate(([0], np.cumsum(self._raw_lengths)))
# set up stim channel processing
if stim_picks is None:
stim_picks = pick_types(
self.info, meg=False, ref_meg=False, stim=True, exclude=[]
)
else:
stim_picks = _picks_to_idx(
self.info, stim_picks, exclude=(), with_ref_meg=False
)
kwargs = dict(
up=sfreq,
down=o_sfreq,
npad=npad,
window=window,
n_jobs=n_jobs,
pad=pad,
method=method,
)
ratio, n_news = zip(
*(
_resamp_ratio_len(sfreq, o_sfreq, old_len)
for old_len in self._raw_lengths
)
)
ratio, n_news = ratio[0], np.array(n_news, int)
new_offsets = np.cumsum([0] + list(n_news))
if self.preload:
new_data = np.empty((len(self.ch_names), new_offsets[-1]), self._data.dtype)
for ri, (n_orig, n_new) in enumerate(zip(self._raw_lengths, n_news)):
this_sl = slice(new_offsets[ri], new_offsets[ri + 1])
if self.preload:
data_chunk = self._data[:, offsets[ri] : offsets[ri + 1]]
new_data[:, this_sl] = resample(data_chunk, **kwargs)
# In empirical testing, it was faster to resample all channels
# (above) and then replace the stim channels than it was to
# only resample the proper subset of channels and then use
# np.insert() to restore the stims.
if len(stim_picks) > 0:
new_data[stim_picks, this_sl] = _resample_stim_channels(
data_chunk[stim_picks], n_new, data_chunk.shape[1]
)
else: # this will not be I/O efficient, but will be mem efficient
for ci in range(len(self.ch_names)):
data_chunk = self.get_data(
ci, offsets[ri], offsets[ri + 1], verbose="error"
)[0]
if ci == 0 and ri == 0:
new_data = np.empty(
(len(self.ch_names), new_offsets[-1]), data_chunk.dtype
)
if ci in stim_picks:
resamp = _resample_stim_channels(
data_chunk, n_new, data_chunk.shape[-1]
)[0]
else:
resamp = resample(data_chunk, **kwargs)
new_data[ci, this_sl] = resamp
self._cropped_samp = int(np.round(self._cropped_samp * ratio))
self._first_samps = np.round(self._first_samps * ratio).astype(int)
self._last_samps = np.array(self._first_samps) + n_news - 1
self._raw_lengths[ri] = list(n_news)
assert np.array_equal(n_news, self._last_samps - self._first_samps + 1)
self._data = new_data
self.preload = True
lowpass = self.info.get("lowpass")
lowpass = np.inf if lowpass is None else lowpass
with self.info._unlock():
self.info["lowpass"] = min(lowpass, sfreq / 2.0)
self.info["sfreq"] = sfreq
# See the comment above why we ignore all errors here.
if events is None:
try:
# Did we loose events?
resampled_events = find_events(self)
if len(resampled_events) != len(original_events):
warn(
"Resampling of the stim channels caused event "
"information to become unreliable. Consider finding "
"events on the original data and passing the event "
"matrix as a parameter."
)
except Exception:
pass
return self
else:
# always make a copy of events
events = events.copy()
events[:, 0] = np.minimum(
np.round(events[:, 0] * ratio).astype(int),
self._data.shape[1] + self.first_samp - 1,
)
return self, events
@verbose
def rescale(self, scalings, *, verbose=None):
"""Rescale channels.
.. warning::
MNE-Python assumes data are stored in SI base units. This function should
typically only be used to fix an incorrect scaling factor in the data to get
it to be in SI base units, otherwise unintended problems (e.g., incorrect
source imaging results) and analysis errors can occur.
Parameters
----------
scalings : int | float | dict
The scaling factor(s) by which to multiply the data. If a float, the same
scaling factor is applied to all channels (this works only if all channels
are of the same type). If a dict, the keys must be valid channel types and
the values the scaling factors to apply to the corresponding channels.
%(verbose)s
Returns
-------
raw : Raw
The raw object with rescaled data (modified in-place).
Examples
--------
A common use case for EEG data is to convert from µV to V, since many EEG
systems store data in µV, but MNE-Python expects the data to be in V. Therefore,
the data needs to be rescaled by a factor of 1e-6. To rescale all channels from
µV to V, you can do::
>>> raw.rescale(1e-6) # doctest: +SKIP
Note that the previous example only works if all channels are of the same type.
If there are multiple channel types, you can pass a dict with the individual
scaling factors. For example, to rescale only EEG channels, you can do::
>>> raw.rescale({"eeg": 1e-6}) # doctest: +SKIP
"""
_validate_type(scalings, (int, float, dict), "scalings")
_check_preload(self, "raw.rescale")
channel_types = self.get_channel_types(unique=True)
if isinstance(scalings, int | float):
if len(channel_types) == 1:
self.apply_function(lambda x: x * scalings, channel_wise=False)
else:
raise ValueError(
"If scalings is a scalar, all channels must be of the same type. "
"Consider passing a dict instead."
)
else:
for ch_type in scalings.keys():
if ch_type not in channel_types:
raise ValueError(
f'Channel type "{ch_type}" is not present in the Raw file.'
)
for ch_type, ch_scale in scalings.items():
self.apply_function(
lambda x: x * ch_scale, picks=ch_type, channel_wise=False
)
return self
@verbose
def crop(self, tmin=0.0, tmax=None, include_tmax=True, *, verbose=None):
"""Crop raw data file.
Limit the data from the raw file to go between specific times. Note
that the new ``tmin`` is assumed to be ``t=0`` for all subsequently
called functions (e.g., :meth:`~mne.io.Raw.time_as_index`, or
:class:`~mne.Epochs`). New :term:`first_samp` and :term:`last_samp`
are set accordingly.
Thus function operates in-place on the instance.
Use :meth:`mne.io.Raw.copy` if operation on a copy is desired.
Parameters
----------
%(tmin_raw)s
%(tmax_raw)s
%(include_tmax)s
%(verbose)s
Returns
-------
raw : instance of Raw
The cropped raw object, modified in-place.
"""
max_time = (self.n_times - 1) / self.info["sfreq"]
if tmax is None:
tmax = max_time
if tmin > tmax:
raise ValueError(f"tmin ({tmin}) must be less than tmax ({tmax})")
if tmin < 0.0:
raise ValueError(f"tmin ({tmin}) must be >= 0")
elif tmax - int(not include_tmax) / self.info["sfreq"] > max_time:
raise ValueError(
f"tmax ({tmax}) must be less than or equal to the max "
f"time ({max_time:0.4f} s)"
)
smin, smax = np.where(
_time_mask(
self.times,
tmin,
tmax,
sfreq=self.info["sfreq"],
include_tmax=include_tmax,
)
)[0][[0, -1]]
cumul_lens = np.concatenate(([0], np.array(self._raw_lengths, dtype="int")))
cumul_lens = np.cumsum(cumul_lens)
keepers = np.logical_and(
np.less(smin, cumul_lens[1:]), np.greater_equal(smax, cumul_lens[:-1])
)
keepers = np.where(keepers)[0]
# if we drop file(s) from the beginning, we need to keep track of
# how many samples we dropped relative to that one
self._cropped_samp += smin
self._first_samps = np.atleast_1d(self._first_samps[keepers])
# Adjust first_samp of first used file!
self._first_samps[0] += smin - cumul_lens[keepers[0]]
self._last_samps = np.atleast_1d(self._last_samps[keepers])
self._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax
self._read_picks = [self._read_picks[ri] for ri in keepers]
assert all(len(r) == len(self._read_picks[0]) for r in self._read_picks)
self._raw_extras = [self._raw_extras[ri] for ri in keepers]
self.filenames = [self.filenames[ri] for ri in keepers]
if self.preload:
# slice and copy to avoid the reference to large array
self._data = self._data[:, smin : smax + 1].copy()
annotations = self.annotations
# now call setter to filter out annotations outside of interval
if annotations.orig_time is None:
assert self.info["meas_date"] is None
# When self.info['meas_date'] is None (which is guaranteed if
# self.annotations.orig_time is None), when we do the
# self.set_annotations, it's assumed that the annotations onset
# are relative to first_time, so we have to subtract it, then
# set_annotations will put it back.
annotations.onset -= self.first_time
self.set_annotations(annotations, False)
return self
@verbose
def crop_by_annotations(self, annotations=None, *, verbose=None):
"""Get crops of raw data file for selected annotations.
Parameters
----------
annotations : instance of Annotations | None
The annotations to use for cropping the raw file. If None,
the annotations from the instance are used.
%(verbose)s
Returns
-------
raws : list
The cropped raw objects.
"""
if annotations is None:
annotations = self.annotations
raws = []
for annot in annotations:
onset = annot["onset"] - self.first_time
# be careful about near-zero errors (crop is very picky about this,
# e.g., -1e-8 is an error)
if -self.info["sfreq"] / 2 < onset < 0:
onset = 0
raw_crop = self.copy().crop(onset, onset + annot["duration"])
raws.append(raw_crop)
return raws
@verbose
def save(
self,
fname,
picks=None,
tmin=0,
tmax=None,
buffer_size_sec=None,
drop_small_buffer=False,
proj=False,
fmt="single",
overwrite=False,
split_size="2GB",
split_naming="neuromag",
verbose=None,
):
"""Save raw data to file.
Parameters
----------
fname : path-like
File name of the new dataset. This has to be a new filename
unless data have been preloaded. Filenames should end with
``raw.fif`` (common raw data), ``raw_sss.fif``
(Maxwell-filtered continuous data),
``raw_tsss.fif`` (temporally signal-space-separated data),
``_meg.fif`` (common MEG data), ``_eeg.fif`` (common EEG data),
or ``_ieeg.fif`` (common intracranial EEG data). You may also
append an additional ``.gz`` suffix to enable gzip compression.
%(picks_all)s
%(tmin_raw)s
%(tmax_raw)s
buffer_size_sec : float | None
Size of data chunks in seconds. If None (default), the buffer
size of the original file is used.
drop_small_buffer : bool
Drop or not the last buffer. It is required by maxfilter (SSS)
that only accepts raw files with buffers of the same size.
proj : bool
If True the data is saved with the projections applied (active).
.. note:: If ``apply_proj()`` was used to apply the projections,
the projectons will be active even if ``proj`` is False.
fmt : 'single' | 'double' | 'int' | 'short'
Format to use to save raw data. Valid options are 'double',
'single', 'int', and 'short' for 64- or 32-bit float, or 32- or
16-bit integers, respectively. It is **strongly** recommended to
use 'single', as this is backward-compatible, and is standard for
maintaining precision. Note that using 'short' or 'int' may result
in loss of precision, complex data cannot be saved as 'short',
and neither complex data types nor real data stored as 'double'
can be loaded with the MNE command-line tools. See raw.orig_format
to determine the format the original data were stored in.
%(overwrite)s
To overwrite original file (the same one that was loaded),
data must be preloaded upon reading.
split_size : str | int
Large raw files are automatically split into multiple pieces. This
parameter specifies the maximum size of each piece. If the
parameter is an integer, it specifies the size in Bytes. It is
also possible to pass a human-readable string, e.g., 100MB.
.. note:: Due to FIFF file limitations, the maximum split
size is 2GB.
%(split_naming)s
.. versionadded:: 0.17
%(verbose)s
Returns
-------
fnames : List of path-like
List of path-like objects containing the path to each file split.
.. versionadded:: 1.9
Notes
-----
If Raw is a concatenation of several raw files, **be warned** that
only the measurement information from the first raw file is stored.
This likely means that certain operations with external tools may not
work properly on a saved concatenated file (e.g., probably some
or all forms of SSS). It is recommended not to concatenate and
then save raw files for this reason.
Samples annotated ``BAD_ACQ_SKIP`` are not stored in order to optimize
memory. Whatever values, they will be loaded as 0s when reading file.
"""
endings = (
"raw.fif",
"raw_sss.fif",
"raw_tsss.fif",
"_meg.fif",
"_eeg.fif",
"_ieeg.fif",
)
endings += tuple([f"{e}.gz" for e in endings])
endings_err = (".fif", ".fif.gz")
# convert to str, check for overwrite a few lines later
fname = _check_fname(
fname,
overwrite=True,
verbose="error",
check_bids_split=True,
name="fname",
)
check_fname(fname, "raw", endings, endings_err=endings_err)
split_size = _get_split_size(split_size)
if not self.preload and fname in self.filenames:
raise ValueError(
"You cannot save data to the same file. Please use a different "
"filename."
)
if self.preload:
if np.iscomplexobj(self._data):
warn(
"Saving raw file with complex data. Loading with command-line MNE "
"tools will not work."
)
data_test = self[0, 0][0]
if fmt == "short" and np.iscomplexobj(data_test):
raise ValueError(
'Complex data must be saved as "single" or "double", not "short"'
)
# check for file existence and expand `~` if present
fname = _check_fname(fname=fname, overwrite=overwrite, verbose="error")
if proj:
info = deepcopy(self.info)
projector, info = setup_proj(info)
activate_proj(info["projs"], copy=False)
else:
info = self.info
projector = None
#
# Set up the reading parameters
#
# Convert to samples
start, stop = self._tmin_tmax_to_start_stop(tmin, tmax)
buffer_size = self._get_buffer_size(buffer_size_sec)
# write the raw file
_validate_type(split_naming, str, "split_naming")
_check_option("split_naming", split_naming, ("neuromag", "bids"))
cfg = _RawFidWriterCfg(buffer_size, split_size, drop_small_buffer, fmt)
raw_fid_writer = _RawFidWriter(self, info, picks, projector, start, stop, cfg)
filenames = _write_raw(raw_fid_writer, fname, split_naming, overwrite)
return filenames
@verbose
def export(
self,
fname,
fmt="auto",
physical_range="auto",
add_ch_type=False,
*,
overwrite=False,
verbose=None,
):
"""Export Raw to external formats.
%(export_fmt_support_raw)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_raw)s
%(physical_range_export_params)s
%(add_ch_type_export_params)s
%(overwrite)s
.. versionadded:: 0.24.1
%(verbose)s
Notes
-----
.. versionadded:: 0.24
%(export_warning_note_raw)s
%(export_eeglab_note)s
%(export_edf_note)s
"""
from ..export import export_raw
export_raw(
fname,
self,
fmt,
physical_range=physical_range,
add_ch_type=add_ch_type,
overwrite=overwrite,
verbose=verbose,
)
def _tmin_tmax_to_start_stop(self, tmin, tmax):
start = int(np.floor(tmin * self.info["sfreq"]))
# "stop" is the first sample *not* to save, so we need +1's here
if tmax is None:
stop = np.inf
else:
stop = self.time_as_index(float(tmax), use_rounding=True)[0] + 1
stop = min(stop, self.last_samp - self.first_samp + 1)
if stop <= start or stop <= 0:
raise ValueError(f"tmin ({tmin}) and tmax ({tmax}) yielded no samples")
return start, stop
@copy_function_doc_to_method_doc(plot_raw)
def plot(
self,
events=None,
duration=10.0,
start=0.0,
n_channels=20,
bgcolor="w",
color=None,
bad_color="lightgray",
event_color="cyan",
scalings=None,
remove_dc=True,
order=None,
show_options=False,
title=None,
show=True,
block=False,
highpass=None,
lowpass=None,
filtorder=4,
clipping=_RAW_CLIP_DEF,
show_first_samp=False,
proj=True,
group_by="type",
butterfly=False,
decim="auto",
noise_cov=None,
event_id=None,
show_scrollbars=True,
show_scalebars=True,
time_format="float",
precompute=None,
use_opengl=None,
*,
picks=None,
theme=None,
overview_mode=None,
splash=True,
verbose=None,
):
return plot_raw(
self,
events,
duration,
start,
n_channels,
bgcolor,
color,
bad_color,
event_color,
scalings,
remove_dc,
order,
show_options,
title,
show,
block,
highpass,
lowpass,
filtorder,
clipping,
show_first_samp,
proj,
group_by,
butterfly,
decim,
noise_cov=noise_cov,
event_id=event_id,
show_scrollbars=show_scrollbars,
show_scalebars=show_scalebars,
time_format=time_format,
precompute=precompute,
use_opengl=use_opengl,
picks=picks,
theme=theme,
overview_mode=overview_mode,
splash=splash,
verbose=verbose,
)
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@property
def times(self):
"""Time points."""
out = _arange_div(self.n_times, float(self.info["sfreq"]))
out.flags["WRITEABLE"] = False
return out
@property
def n_times(self):
"""Number of time points."""
return self.last_samp - self.first_samp + 1
@property
def duration(self):
"""Duration of the data in seconds.
.. versionadded:: 1.9
"""
return self.n_times / self.info["sfreq"]
def __len__(self):
"""Return the number of time points.
Returns
-------
len : int
The number of time points.
Examples
--------
This can be used as::
>>> len(raw) # doctest: +SKIP
1000
"""
return self.n_times
@verbose
def load_bad_channels(self, bad_file=None, force=False, verbose=None):
"""Mark channels as bad from a text file.
This function operates mostly in the style of the C function
``mne_mark_bad_channels``. Each line in the text file will be
interpreted as a name of a bad channel.
Parameters
----------
bad_file : path-like | None
File name of the text file containing bad channels.
If ``None`` (default), bad channels are cleared, but this
is more easily done directly with ``raw.info['bads'] = []``.
force : bool
Whether or not to force bad channel marking (of those
that exist) if channels are not found, instead of
raising an error. Defaults to ``False``.
%(verbose)s
"""
prev_bads = self.info["bads"]
new_bads = []
if bad_file is not None:
# Check to make sure bad channels are there
names = frozenset(self.info["ch_names"])
with open(bad_file) as fid:
bad_names = [line for line in fid.read().splitlines() if line]
new_bads = [ci for ci in bad_names if ci in names]
count_diff = len(bad_names) - len(new_bads)
if count_diff > 0:
msg = (
f"{count_diff} bad channel(s) from:"
f"\n{bad_file}\nnot found in:\n{self.filenames[0]}"
)
if not force:
raise ValueError(msg)
else:
warn(msg)
if prev_bads != new_bads:
logger.info(f"Updating bad channels: {prev_bads} -> {new_bads}")
self.info["bads"] = new_bads
else:
logger.info(f"No channels updated. Bads are: {prev_bads}")
@fill_doc
def append(self, raws, preload=None):
"""Concatenate raw instances as if they were continuous.
.. note:: Boundaries of the raw files are annotated bad. If you wish to
use the data as continuous recording, you can remove the
boundary annotations after concatenation (see
:meth:`mne.Annotations.delete`).
Parameters
----------
raws : list, or Raw instance
List of Raw instances to concatenate to the current instance
(in order), or a single raw instance to concatenate.
%(preload_concatenate)s
"""
if not isinstance(raws, list):
raws = [raws]
# make sure the raws are compatible
all_raws = [self]
all_raws += raws
_check_raw_compatibility(all_raws)
# deal with preloading data first (while files are separate)
all_preloaded = self.preload and all(r.preload for r in raws)
if preload is None:
if all_preloaded:
preload = True
else:
preload = False
if preload is False:
if self.preload:
self._data = None
self.preload = False
else:
# do the concatenation ourselves since preload might be a string
nchan = self.info["nchan"]
c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)])
nsamp = c_ns[-1]
if not self.preload:
this_data = self._read_segment()
else:
this_data = self._data
# allocate the buffer
_data = _allocate_data(preload, (nchan, nsamp), this_data.dtype)
_data[:, 0 : c_ns[0]] = this_data
for ri in range(len(raws)):
if not raws[ri].preload:
# read the data directly into the buffer
data_buffer = _data[:, c_ns[ri] : c_ns[ri + 1]]
raws[ri]._read_segment(data_buffer=data_buffer)
else:
_data[:, c_ns[ri] : c_ns[ri + 1]] = raws[ri]._data
self._data = _data
self.preload = True
# now combine information from each raw file to construct new self
annotations = self.annotations
assert annotations.orig_time == self.info["meas_date"]
edge_samps = list()
for ri, r in enumerate(raws):
edge_samps.append(self.last_samp - self.first_samp + 1)
annotations = _combine_annotations(
annotations,
r.annotations,
edge_samps[-1],
self.first_samp,
r.first_samp,
self.info["sfreq"],
)
self._first_samps = np.r_[self._first_samps, r._first_samps]
self._last_samps = np.r_[self._last_samps, r._last_samps]
self._read_picks += r._read_picks
self._raw_extras += r._raw_extras
self._filenames += r._filenames # use the private attribute to use the list
assert annotations.orig_time == self.info["meas_date"]
# The above _combine_annotations gets everything synchronized to
# first_samp. set_annotations (with no absolute time reference) assumes
# that the annotations being set are relative to first_samp, and will
# add it back on. So here we have to remove it:
if annotations.orig_time is None:
annotations.onset -= self.first_samp / self.info["sfreq"]
self.set_annotations(annotations)
for edge_samp in edge_samps:
onset = _sync_onset(self, edge_samp / self.info["sfreq"], True)
logger.debug(
f"Marking edge at {edge_samp} samples (maps to {onset:0.3f} sec)"
)
self.annotations.append(onset, 0.0, "BAD boundary")
self.annotations.append(onset, 0.0, "EDGE boundary")
if not (
len(self._first_samps)
== len(self._last_samps)
== len(self._raw_extras)
== len(self.filenames)
== len(self._read_picks)
):
raise RuntimeError("Append error") # should never happen
def close(self):
"""Clean up the object.
Does nothing for objects that close their file descriptors.
Things like Raw will override this method.
"""
pass # noqa
def copy(self):
"""Return copy of Raw instance.
Returns
-------
inst : instance of Raw
A copy of the instance.
"""
return deepcopy(self)
def __repr__(self): # noqa: D105
name = self.filenames[0]
name = "" if name is None else Path(name).name + ", "
size_str = str(sizeof_fmt(self._size)) # str in case it fails -> None
size_str += f", data{'' if self.preload else ' not'} loaded"
s = (
f"{name}{len(self.ch_names)} x {self.n_times} "
f"({self.duration:0.1f} s), ~{size_str}"
)
return f"<{self.__class__.__name__} | {s}>"
@repr_html
def _repr_html_(self):
basenames = [f.name for f in self.filenames if f is not None]
duration = self._get_duration_string()
raw_template = _get_html_template("repr", "raw.html.jinja")
return raw_template.render(
inst=self,
filenames=basenames,
duration=duration,
)
def _get_duration_string(self):
# https://stackoverflow.com/a/10981895
duration = np.ceil(self.duration) # always take full seconds
hours, remainder = divmod(duration, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02.0f}:{minutes:02.0f}:{seconds:02.0f}"
def add_events(self, events, stim_channel=None, replace=False):
"""Add events to stim channel.
Parameters
----------
events : ndarray, shape (n_events, 3)
Events to add. The first column specifies the sample number of
each event, the second column is ignored, and the third column
provides the event value. If events already exist in the Raw
instance at the given sample numbers, the event values will be
added together.
stim_channel : str | None
Name of the stim channel to add to. If None, the config variable
'MNE_STIM_CHANNEL' is used. If this is not found, it will default
to ``'STI 014'``.
replace : bool
If True the old events on the stim channel are removed before
adding the new ones.
Notes
-----
Data must be preloaded in order to add events.
"""
_check_preload(self, "Adding events")
events = np.asarray(events)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError("events must be shape (n_events, 3)")
stim_channel = _get_stim_channel(stim_channel, self.info)
pick = pick_channels(self.ch_names, stim_channel, ordered=False)
if len(pick) == 0:
raise ValueError(f"Channel {stim_channel} not found")
pick = pick[0]
idx = events[:, 0].astype(int)
if np.any(idx < self.first_samp) or np.any(idx > self.last_samp):
raise ValueError(
f"event sample numbers must be between {self.first_samp} "
f"and {self.last_samp}"
)
if not all(idx == events[:, 0]):
raise ValueError("event sample numbers must be integers")
if replace:
self._data[pick, :] = 0.0
self._data[pick, idx - self.first_samp] += events[:, 2]
def _get_buffer_size(self, buffer_size_sec=None):
"""Get the buffer size."""
if buffer_size_sec is None:
buffer_size_sec = self.buffer_size_sec
buffer_size_sec = float(buffer_size_sec)
return int(np.ceil(buffer_size_sec * self.info["sfreq"]))
@verbose
def compute_psd(
self,
method="welch",
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=False,
remove_dc=True,
reject_by_annotation=True,
*,
n_jobs=1,
verbose=None,
**method_kw,
):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Note that ``"multitaper"`` cannot be used if ``reject_by_annotation=True``
and there are ``"bad_*"`` annotations in the :class:`~mne.io.Raw` data;
in such cases use ``"welch"``. Default is ``'welch'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(reject_by_annotation_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of Spectrum
The spectral representation of the data.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
method = _validate_method(method, type(self).__name__)
self._set_legacy_nfft_default(tmin, tmax, method, method_kw)
return Spectrum(
self,
method=method,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
exclude=exclude,
proj=proj,
remove_dc=remove_dc,
reject_by_annotation=reject_by_annotation,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def compute_tfr(
self,
method,
freqs,
*,
tmin=None,
tmax=None,
picks=None,
proj=False,
output="power",
reject_by_annotation=True,
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Compute a time-frequency representation of sensor data.
Parameters
----------
%(method_tfr)s
%(freqs_tfr)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(output_compute_tfr)s
%(reject_by_annotation_tfr)s
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_tfr)s
Returns
-------
tfr : instance of RawTFR
The time-frequency-resolved power estimates of the data.
Notes
-----
.. versionadded:: 1.7
References
----------
.. footbibliography::
"""
_check_option("output", output, ("power", "phase", "complex"))
method_kw["output"] = output
return RawTFR(
self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
reject_by_annotation=reject_by_annotation,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def to_data_frame(
self,
picks=None,
index=None,
scalings=None,
copy=True,
start=None,
stop=None,
long_format=False,
time_format=None,
*,
verbose=None,
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default, an
additional column "time" is added, unless ``index`` is not ``None``
(in which case time values form the DataFrame's index).
Parameters
----------
%(picks_all)s
%(index_df_raw)s
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
start : int | None
Starting sample index for creating the DataFrame from a temporal
span of the Raw object. ``None`` (the default) uses the first
sample.
stop : int | None
Ending sample index for creating the DataFrame from a temporal span
of the Raw object. ``None`` (the default) uses the last sample.
%(long_format_df_raw)s
%(time_format_df_raw)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ["time"]
valid_time_formats = ["ms", "timedelta", "datetime"]
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(
time_format, valid_time_formats, self.info["meas_date"]
)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data, times = self[picks, start:stop]
data = data.T
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = _convert_times(
times, time_format, self.info["meas_date"], self.first_time
)
mindex.append(("time", times))
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=["time"]
)
return df
def describe(self, data_frame=False):
"""Describe channels (name, type, descriptive statistics).
Parameters
----------
data_frame : bool
If True, return results in a pandas.DataFrame. If False, only print
results. Columns 'ch', 'type', and 'unit' indicate channel index,
channel type, and unit of the remaining five columns. These columns
are 'min' (minimum), 'Q1' (first quartile or 25% percentile),
'median', 'Q3' (third quartile or 75% percentile), and 'max'
(maximum).
Returns
-------
result : None | pandas.DataFrame
If data_frame=False, returns None. If data_frame=True, returns
results in a pandas.DataFrame (requires pandas).
"""
nchan = self.info["nchan"]
# describe each channel
cols = defaultdict(list)
cols["name"] = self.ch_names
for i in range(nchan):
ch = self.info["chs"][i]
data = self[i][0]
cols["type"].append(channel_type(self.info, i))
cols["unit"].append(_unit2human[ch["unit"]])
cols["min"].append(np.min(data))
cols["Q1"].append(np.percentile(data, 25))
cols["median"].append(np.median(data))
cols["Q3"].append(np.percentile(data, 75))
cols["max"].append(np.max(data))
if data_frame: # return data frame
import pandas as pd
df = pd.DataFrame(cols)
df.index.name = "ch"
return df
# convert into commonly used units
scalings = _handle_default("scalings")
units = _handle_default("units")
for i in range(nchan):
unit = units.get(cols["type"][i])
scaling = scalings.get(cols["type"][i], 1)
if scaling != 1:
cols["unit"][i] = unit
for col in ["min", "Q1", "median", "Q3", "max"]:
cols[col][i] *= scaling
lens = {
"ch": max(2, len(str(nchan))),
"name": max(4, max([len(n) for n in cols["name"]])),
"type": max(4, max([len(t) for t in cols["type"]])),
"unit": max(4, max([len(u) for u in cols["unit"]])),
}
# print description, start with header
print(self)
print(
f"{'ch':>{lens['ch']}} "
f"{'name':<{lens['name']}} "
f"{'type':<{lens['type']}} "
f"{'unit':<{lens['unit']}} "
f"{'min':>9} "
f"{'Q1':>9} "
f"{'median':>9} "
f"{'Q3':>9} "
f"{'max':>9}"
)
# print description for each channel
for i in range(nchan):
msg = (
f"{i:>{lens['ch']}} "
f"{cols['name'][i]:<{lens['name']}} "
f"{cols['type'][i].upper():<{lens['type']}} "
f"{cols['unit'][i]:<{lens['unit']}} "
)
for col in ["min", "Q1", "median", "Q3"]:
msg += f"{cols[col][i]:>9.2f} "
msg += f"{cols['max'][i]:>9.2f}"
print(msg)
def _allocate_data(preload, shape, dtype):
"""Allocate data in memory or in memmap for preloading."""
if preload in (None, True): # None comes from _read_segment
data = np.zeros(shape, dtype)
else:
_validate_type(preload, "path-like", "preload")
data = np.memmap(str(preload), mode="w+", dtype=dtype, shape=shape)
return data
def _convert_slice(sel):
if len(sel) and (np.diff(sel) == 1).all():
return slice(sel[0], sel[-1] + 1)
else:
return sel
def _get_ch_factors(inst, units, picks_idxs):
"""Get scaling factors for data, given units.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
The instance.
%(units)s
picks_idxs : ndarray
The picks as provided through _picks_to_idx.
Returns
-------
ch_factors : ndarray of floats, shape(len(picks),)
The scaling factors for each channel, ordered according
to picks.
"""
_validate_type(units, types=(None, str, dict), item_name="units")
ch_factors = np.ones(len(picks_idxs))
si_units = _handle_default("si_units")
ch_types = inst.get_channel_types(picks=picks_idxs)
# Convert to dict if str units
if isinstance(units, str):
# Check that there is only one channel type
unit_ch_type = list(set(ch_types) & set(si_units.keys()))
if len(unit_ch_type) > 1:
raise ValueError(
'"units" cannot be str if there is more than '
"one channel type with a unit "
f"{unit_ch_type}."
)
units = {unit_ch_type[0]: units} # make the str argument a dict
# Loop over the dict to get channel factors
if isinstance(units, dict):
for ch_type, ch_unit in units.items():
# Get the scaling factors
scaling = _get_scaling(ch_type, ch_unit)
if scaling != 1:
indices = [i_ch for i_ch, ch in enumerate(ch_types) if ch == ch_type]
ch_factors[indices] *= scaling
return ch_factors
def _get_scaling(ch_type, target_unit):
"""Return the scaling factor based on the channel type and a target unit.
Parameters
----------
ch_type : str
The channel type.
target_unit : str
The target unit for the provided channel type.
Returns
-------
scaling : float
The scaling factor to convert from the si_unit (used by default for MNE
objects) to the target unit.
"""
scaling = 1.0
si_units = _handle_default("si_units")
si_units_splitted = {key: si_units[key].split("/") for key in si_units}
prefixes = _handle_default("prefixes")
prefix_list = list(prefixes.keys())
# Check that the provided unit exists for the ch_type
unit_list = target_unit.split("/")
if ch_type not in si_units.keys():
raise KeyError(
f"{ch_type} is not a channel type that can be scaled from units."
)
si_unit_list = si_units_splitted[ch_type]
if len(unit_list) != len(si_unit_list):
raise ValueError(
f"{target_unit} is not a valid unit for {ch_type}, use a "
f"sub-multiple of {si_units[ch_type]} instead."
)
for i, unit in enumerate(unit_list):
valid = [prefix + si_unit_list[i] for prefix in prefix_list]
if unit not in valid:
raise ValueError(
f"{target_unit} is not a valid unit for {ch_type}, use a "
f"sub-multiple of {si_units[ch_type]} instead."
)
# Get the scaling factors
for i, unit in enumerate(unit_list):
has_square = False
# XXX power normally not used as csd cannot get_data()
if unit[-1] == "²":
has_square = True
if unit == "m" or unit == "m²":
factor = 1.0
elif unit[0] in prefixes.keys():
factor = prefixes[unit[0]]
else:
factor = 1.0
if factor != 1:
if has_square:
factor *= factor
if i == 0:
scaling = scaling * factor
elif i == 1:
scaling = scaling / factor
return scaling
class _ReadSegmentFileProtector:
"""Ensure only _filenames, _raw_extras, and _read_segment_file are used."""
def __init__(self, raw):
self.__raw = raw
assert hasattr(raw, "_projector")
self._filenames = raw._filenames
self._raw_extras = raw._raw_extras
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
return self.__raw.__class__._read_segment_file(
self, data, idx, fi, start, stop, cals, mult
)
@property
def filenames(self) -> tuple[Path, ...]:
return tuple(self._filenames)
class _RawShell:
"""Create a temporary raw object."""
def __init__(self):
self.first_samp = None
self.last_samp = None
self._first_time = None
self._last_time = None
self._cals = None
self._projector = None
@property
def n_times(self): # noqa: D102
return self.last_samp - self.first_samp + 1
@property
def annotations(self): # noqa: D102
return self._annotations
def set_annotations(self, annotations):
if annotations is None:
annotations = Annotations([], [], [], None)
self._annotations = annotations.copy()
###############################################################################
# Writing
# Assume we never hit more than 100 splits, like for epochs
MAX_N_SPLITS = 100
def _write_raw(raw_fid_writer, fpath, split_naming, overwrite):
"""Write raw file with splitting."""
dir_path = fpath.parent
_check_fname(
dir_path,
overwrite="read",
must_exist=True,
name="parent directory",
need_dir=True,
)
# We have to create one extra filename here to make the for loop below happy,
# but it will raise an error if it actually gets used
split_fnames = _make_split_fnames(
fpath.name, n_splits=MAX_N_SPLITS + 1, split_naming=split_naming
)
is_next_split, prev_fname = True, None
output_fnames = []
for part_idx in range(0, MAX_N_SPLITS):
if not is_next_split:
break
bids_special_behavior = part_idx == 0 and split_naming == "bids"
if bids_special_behavior:
reserved_fname = dir_path / split_fnames[0]
logger.info(f"Reserving possible split file {reserved_fname.name}")
_check_fname(reserved_fname, overwrite)
reserved_ctx = _ReservedFilename(reserved_fname)
use_fpath = fpath
else:
reserved_ctx = nullcontext()
use_fpath = dir_path / split_fnames[part_idx]
next_fname = split_fnames[part_idx + 1]
_check_fname(use_fpath, overwrite)
logger.info(f"Writing {use_fpath}")
with start_and_end_file(use_fpath) as fid, reserved_ctx:
is_next_split = raw_fid_writer.write(fid, part_idx, prev_fname, next_fname)
logger.info(f"Closing {use_fpath}")
if bids_special_behavior and is_next_split:
logger.info(f"Renaming BIDS split file {fpath.name}")
prev_fname = dir_path / split_fnames[0]
shutil.move(use_fpath, prev_fname)
output_fnames.append(prev_fname)
else:
output_fnames.append(use_fpath)
prev_fname = use_fpath
else:
raise RuntimeError(f"Exceeded maximum number of splits ({MAX_N_SPLITS}).")
logger.info("[done]")
return output_fnames
class _ReservedFilename:
def __init__(self, fname: Path):
self.fname = fname
assert fname.parent.exists(), fname
with open(fname, "w"):
pass
self.remove = True
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.remove:
self.fname.unlink()
@dataclass(frozen=True)
class _RawFidWriterCfg:
buffer_size: int
split_size: int
drop_small_buffer: bool
fmt: str
reset_range: bool = field(init=False)
data_type: int = field(init=False)
def __post_init__(self):
type_dict = dict(
short=FIFF.FIFFT_DAU_PACK16,
int=FIFF.FIFFT_INT,
single=FIFF.FIFFT_FLOAT,
double=FIFF.FIFFT_DOUBLE,
)
_check_option("fmt", self.fmt, type_dict.keys())
reset_dict = dict(short=False, int=False, single=True, double=True)
object.__setattr__(self, "reset_range", reset_dict[self.fmt])
object.__setattr__(self, "data_type", type_dict[self.fmt])
class _RawFidWriter:
def __init__(self, raw, info, picks, projector, start, stop, cfg):
self.raw = raw
self.picks = _picks_to_idx(info, picks, "all", ())
self.info = pick_info(info, sel=self.picks, copy=True)
for k in range(self.info["nchan"]):
# Scan numbers may have been messed up
self.info["chs"][k]["scanno"] = k + 1 # scanno starts at 1 in FIF format
if cfg.reset_range:
self.info["chs"][k]["range"] = 1.0
self.projector = projector
# self.start is the only mutable attribute in this design!
self.start, self.stop = start, stop
self.cfg = cfg
def write(self, fid, part_idx, prev_fname, next_fname):
self._check_start_stop_within_bounds()
start_block(fid, FIFF.FIFFB_MEAS)
_write_raw_metadata(
fid,
self.info,
self.cfg.data_type,
self.cfg.reset_range,
self.raw.annotations,
)
self.start = _write_raw_data(
self.raw,
self.info,
self.picks,
fid,
part_idx,
self.start,
self.stop,
self.cfg.buffer_size,
prev_fname,
self.cfg.split_size,
next_fname,
self.projector,
self.cfg.drop_small_buffer,
self.cfg.fmt,
)
end_block(fid, FIFF.FIFFB_MEAS)
is_next_split = self.start < self.stop
return is_next_split
def _check_start_stop_within_bounds(self):
# we've done something wrong if we hit this
n_times_max = len(self.raw.times)
error_msg = (
f"Can't write raw file with no data: {self.start} -> {self.stop} "
f"(max: {n_times_max}) requested"
)
if self.start >= self.stop or self.stop > n_times_max:
raise RuntimeError(error_msg)
def _write_raw_data(
raw,
info,
picks,
fid,
part_idx,
start,
stop,
buffer_size,
prev_fname,
split_size,
next_fname,
projector,
drop_small_buffer,
fmt,
):
# Start the raw data
data_kind = "IAS_" if info.get("maxshield", False) else ""
data_kind = getattr(FIFF, f"FIFFB_{data_kind}RAW_DATA")
start_block(fid, data_kind)
first_samp = raw.first_samp + start
if first_samp != 0:
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp)
# previous file name and id
if part_idx > 0 and prev_fname is not None:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname)
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, info["meas_id"])
write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx - 1)
end_block(fid, FIFF.FIFFB_REF)
pos_prev = fid.tell()
if pos_prev > split_size:
raise ValueError(
'file is larger than "split_size" after writing '
"measurement information, you must use a larger "
f"value for split size: {pos_prev} plus enough bytes for "
"the chosen buffer_size"
)
# Check to see if this has acquisition skips and, if so, if we can
# write out empty buffers instead of zeroes
firsts = list(range(start, stop, buffer_size))
lasts = np.array(firsts) + buffer_size
if lasts[-1] > stop:
lasts[-1] = stop
sk_onsets, sk_ends = _annotations_starts_stops(raw, "bad_acq_skip")
do_skips = False
if len(sk_onsets) > 0:
if np.isin(sk_onsets, firsts).all() and np.isin(sk_ends, lasts).all():
do_skips = True
else:
if part_idx == 0:
warn(
"Acquisition skips detected but did not fit evenly into "
"output buffer_size, will be written as zeroes."
)
cals = [ch["cal"] * ch["range"] for ch in info["chs"]]
# Write the blocks
n_current_skip = 0
new_start = start
for first, last in zip(firsts, lasts):
if do_skips:
if ((first >= sk_onsets) & (last <= sk_ends)).any():
# Track how many we have
n_current_skip += 1
continue
elif n_current_skip > 0:
# Write out an empty buffer instead of data
write_int(fid, FIFF.FIFF_DATA_SKIP, n_current_skip)
# These two NOPs appear to be optional (MaxFilter does not do
# it, but some acquisition machines do) so let's not bother.
# write_nop(fid)
# write_nop(fid)
n_current_skip = 0
data, times = raw[picks, first:last]
assert len(times) == last - first
if projector is not None:
data = np.dot(projector, data)
if drop_small_buffer and (first > start) and (len(times) < buffer_size):
logger.info("Skipping data chunk due to small buffer ... [done]")
break
logger.debug(f"Writing FIF {first:6d} ... {last:6d} ...")
_write_raw_buffer(fid, data, cals, fmt)
pos = fid.tell()
this_buff_size_bytes = pos - pos_prev
overage = pos - split_size + _NEXT_FILE_BUFFER
if overage > 0:
# This should occur on the first buffer write of the file, so
# we should mention the space required for the meas info
raise ValueError(
f"buffer size ({this_buff_size_bytes}) is too large for the "
f"given split size ({split_size}) "
f"by {overage} bytes after writing info ({pos_prev}) and "
"leaving enough space "
f'for end tags ({_NEXT_FILE_BUFFER}): decrease "buffer_size_sec" '
'or increase "split_size".'
)
new_start = last
# Split files if necessary, leave some space for next file info
# make sure we check to make sure we actually *need* another buffer
# with the "and" check
if (
pos >= split_size - this_buff_size_bytes - _NEXT_FILE_BUFFER
and first + buffer_size < stop
):
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, next_fname.name)
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, info["meas_id"])
write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx + 1)
end_block(fid, FIFF.FIFFB_REF)
break
pos_prev = pos
end_block(fid, data_kind)
return new_start
@fill_doc
def _write_raw_metadata(fid, info, data_type, reset_range, annotations):
"""Start write raw data in file.
Parameters
----------
fid : file
The created file.
%(info_not_none)s
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data.
reset_range : bool
If True, the info['chs'][k]['range'] parameter will be set to unity.
annotations : instance of Annotations
The annotations to write.
"""
#
# Create the file and save the essentials
#
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
write_meas_info(fid, info, data_type=data_type, reset_range=reset_range)
#
# Annotations
#
if len(annotations) > 0: # don't save empty annot
_write_annotations(fid, annotations)
def _write_raw_buffer(fid, buf, cals, fmt):
"""Write raw buffer.
Parameters
----------
fid : file descriptor
an open raw data file.
buf : array
The buffer to write.
cals : array
Calibration factors.
fmt : str
'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit
float for each item. This will be doubled for complex datatypes. Note
that short and int formats cannot be used for complex data.
"""
if buf.shape[0] != len(cals):
raise ValueError("buffer and calibration sizes do not match")
_check_option("fmt", fmt, ["short", "int", "single", "double"])
cast_int = False # allow unsafe cast
if np.isrealobj(buf):
if fmt == "short":
write_function = write_dau_pack16
cast_int = True
elif fmt == "int":
write_function = write_int
cast_int = True
elif fmt == "single":
write_function = write_float
else:
write_function = write_double
else:
if fmt == "single":
write_function = write_complex64
elif fmt == "double":
write_function = write_complex128
else:
raise ValueError(
'only "single" and "double" supported for writing complex data'
)
buf = buf / np.ravel(cals)[:, None]
if cast_int:
buf = buf.astype(np.int32)
write_function(fid, FIFF.FIFF_DATA_BUFFER, buf)
def _check_raw_compatibility(raw):
"""Ensure all instances of Raw have compatible parameters."""
for ri in range(1, len(raw)):
if not isinstance(raw[ri], type(raw[0])):
raise ValueError(f"raw[{ri}] type must match")
for key in ("nchan", "sfreq"):
a, b = raw[ri].info[key], raw[0].info[key]
if a != b:
raise ValueError(
f"raw[{ri}].info[{key}] must match:\n{repr(a)} != {repr(b)}"
)
for kind in ("bads", "ch_names"):
set1 = set(raw[0].info[kind])
set2 = set(raw[ri].info[kind])
mismatch = set1.symmetric_difference(set2)
if mismatch:
raise ValueError(
f"raw[{ri}]['info'][{kind}] do not match: {sorted(mismatch)}"
)
if any(raw[ri]._cals != raw[0]._cals):
raise ValueError(f"raw[{ri}]._cals must match")
if len(raw[0].info["projs"]) != len(raw[ri].info["projs"]):
raise ValueError("SSP projectors in raw files must be the same")
if not all(
_proj_equal(p1, p2)
for p1, p2 in zip(raw[0].info["projs"], raw[ri].info["projs"])
):
raise ValueError("SSP projectors in raw files must be the same")
if any(r.orig_format != raw[0].orig_format for r in raw):
warn(
"raw files do not all have the same data format, could result in "
'precision mismatch. Setting raw.orig_format="unknown"'
)
raw[0].orig_format = "unknown"
@verbose
def concatenate_raws(
raws, preload=None, events_list=None, *, on_mismatch="raise", verbose=None
):
"""Concatenate `~mne.io.Raw` instances as if they were continuous.
.. note:: ``raws[0]`` is modified in-place to achieve the concatenation.
Boundaries of the raw files are annotated bad. If you wish to use
the data as continuous recording, you can remove the boundary
annotations after concatenation (see
:meth:`mne.Annotations.delete`).
Parameters
----------
raws : list
List of `~mne.io.Raw` instances to concatenate (in order).
%(preload_concatenate)s
events_list : None | list
The events to concatenate. Defaults to ``None``.
%(on_mismatch_info)s
%(verbose)s
Returns
-------
raw : instance of Raw
The result of the concatenation (first Raw instance passed in).
events : ndarray of int, shape (n_events, 3)
The events. Only returned if ``event_list`` is not None.
"""
for idx, raw in enumerate(raws[1:], start=1):
_ensure_infos_match(
info1=raws[0].info,
info2=raw.info,
name=f"raws[{idx}]",
on_mismatch=on_mismatch,
)
if events_list is not None:
if len(events_list) != len(raws):
raise ValueError(
"`raws` and `event_list` are required to be of the same length"
)
first, last = zip(*[(r.first_samp, r.last_samp) for r in raws])
events = concatenate_events(events_list, first, last)
raws[0].append(raws[1:], preload)
if events_list is None:
return raws[0]
else:
return raws[0], events
@fill_doc
def match_channel_orders(insts, copy=True):
"""Ensure consistent channel order across instances (Raw, Epochs, or Evoked).
Parameters
----------
insts : list
List of :class:`~mne.io.Raw`, :class:`~mne.Epochs`,
or :class:`~mne.Evoked` instances to order.
%(copy_df)s
Returns
-------
list of Raw | list of Epochs | list of Evoked
List of instances (Raw, Epochs, or Evoked) with channel orders matched
according to the order they had in the first item in the ``insts`` list.
"""
insts = deepcopy(insts) if copy else insts
ch_order = insts[0].ch_names
for inst in insts[1:]:
inst.reorder_channels(ch_order)
return insts
def _check_maxshield(allow_maxshield):
"""Warn or error about MaxShield."""
msg = (
"This file contains raw Internal Active "
"Shielding data. It may be distorted. Elekta "
"recommends it be run through MaxFilter to "
"produce reliable results. Consider closing "
"the file and running MaxFilter on the data."
)
if allow_maxshield:
if not (isinstance(allow_maxshield, str) and allow_maxshield == "yes"):
warn(msg)
else:
msg += (
" Use allow_maxshield=True if you are sure you"
" want to load the data despite this warning."
)
raise ValueError(msg)
def _get_fname_rep(fname):
if not _file_like(fname):
out = str(fname)
else:
out = "file-like"
try:
out += f' "{fname.name}"'
except Exception:
pass
return out