[074d3d]: / mne / inverse_sparse / mxne_optim.py

Download this file

1688 lines (1486 with data), 53.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import functools
from math import sqrt
import numpy as np
from ..time_frequency._stft import istft, stft, stft_norm1, stft_norm2
from ..utils import (
_check_option,
_get_blas_funcs,
_validate_type,
logger,
sum_squared,
verbose,
warn,
)
from .mxne_debiasing import compute_bias
@functools.lru_cache(None)
def _get_dgemm():
return _get_blas_funcs(np.float64, "gemm")
def groups_norm2(A, n_orient):
"""Compute squared L2 norms of groups inplace."""
n_positions = A.shape[0] // n_orient
return np.sum(np.power(A, 2, A).reshape(n_positions, -1), axis=1)
def norm_l2inf(A, n_orient, copy=True):
"""L2-inf norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return sqrt(np.max(groups_norm2(A, n_orient)))
def norm_l21(A, n_orient, copy=True):
"""L21 norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return np.sum(np.sqrt(groups_norm2(A, n_orient)))
def _primal_l21(M, G, X, active_set, alpha, n_orient):
"""Primal objective for the mixed-norm inverse problem.
See :footcite:`GramfortEtAl2012`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_active, n_times)
Sources.
active_set : array of bool, shape (n_sources,)
Mask of active sources.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
p_obj : float
Primal objective.
R : array, shape (n_sensors, n_times)
Current residual (M - G * X).
nR2 : float
Data-fitting term.
GX : array, shape (n_sensors, n_times)
Forward prediction.
"""
GX = np.dot(G[:, active_set], X)
R = M - GX
penalty = norm_l21(X, n_orient, copy=True)
nR2 = sum_squared(R)
p_obj = 0.5 * nR2 + alpha * penalty
return p_obj, R, nR2, GX
def dgap_l21(M, G, X, active_set, alpha, n_orient):
"""Duality gap for the mixed norm inverse problem.
See :footcite:`GramfortEtAl2012`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_active, n_times)
Sources.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
gap : float
Dual gap.
p_obj : float
Primal objective.
d_obj : float
Dual objective. gap = p_obj - d_obj.
R : array, shape (n_sensors, n_times)
Current residual (M - G * X).
References
----------
.. footbibilography::
"""
p_obj, R, nR2, GX = _primal_l21(M, G, X, active_set, alpha, n_orient)
dual_norm = norm_l2inf(np.dot(G.T, R), n_orient, copy=False)
scaling = alpha / dual_norm
scaling = min(scaling, 1.0)
d_obj = (scaling - 0.5 * (scaling**2)) * nR2 + scaling * np.sum(R * GX)
gap = p_obj - d_obj
return gap, p_obj, d_obj, R
def _mixed_norm_solver_cd(
M,
G,
alpha,
lipschitz_constant,
maxit=10000,
tol=1e-8,
init=None,
n_orient=1,
dgap_freq=10,
):
"""Solve L21 inverse problem with coordinate descent."""
from sklearn.linear_model import MultiTaskLasso
assert M.ndim == G.ndim and M.shape[0] == G.shape[0]
clf = MultiTaskLasso(
alpha=alpha / len(M),
tol=tol / sum_squared(M),
fit_intercept=False,
max_iter=maxit,
warm_start=True,
)
if init is not None:
clf.coef_ = init.T
else:
clf.coef_ = np.zeros((G.shape[1], M.shape[1])).T
clf.fit(G, M)
X = clf.coef_.T
active_set = np.any(X, axis=1)
X = X[active_set]
gap, p_obj, d_obj, _ = dgap_l21(M, G, X, active_set, alpha, n_orient)
return X, active_set, p_obj
def _mixed_norm_solver_bcd(
M,
G,
alpha,
lipschitz_constant,
maxit=200,
tol=1e-8,
init=None,
n_orient=1,
dgap_freq=10,
use_accel=True,
K=5,
):
"""Solve L21 inverse problem with block coordinate descent."""
_, n_times = M.shape
_, n_sources = G.shape
n_positions = n_sources // n_orient
if init is None:
X = np.zeros((n_sources, n_times))
R = M.copy()
else:
X = init
R = M - np.dot(G, X)
E = [] # track primal objective function
highest_d_obj = -np.inf
active_set = np.zeros(n_sources, dtype=bool) # start with full AS
alpha_lc = alpha / lipschitz_constant
if use_accel:
last_K_X = np.empty((K + 1, n_sources, n_times))
U = np.zeros((K, n_sources * n_times))
# First make G fortran for faster access to blocks of columns
G = np.asfortranarray(G)
# Ensure these are correct for dgemm
assert R.dtype == np.float64
assert G.dtype == np.float64
one_ovr_lc = 1.0 / lipschitz_constant
# assert that all the multiplied matrices are fortran contiguous
assert X.T.flags.f_contiguous
assert R.T.flags.f_contiguous
assert G.flags.f_contiguous
# storing list of contiguous arrays
list_G_j_c = []
for j in range(n_positions):
idx = slice(j * n_orient, (j + 1) * n_orient)
list_G_j_c.append(np.ascontiguousarray(G[:, idx]))
for i in range(maxit):
_bcd(G, X, R, active_set, one_ovr_lc, n_orient, alpha_lc, list_G_j_c)
if (i + 1) % dgap_freq == 0:
_, p_obj, d_obj, _ = dgap_l21(
M, G, X[active_set], active_set, alpha, n_orient
)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.debug(
"Iteration %d :: p_obj %f :: dgap %f :: n_active %d",
i + 1,
p_obj,
gap,
np.sum(active_set) / n_orient,
)
if gap < tol:
logger.debug(f"Convergence reached ! (gap: {gap} < {tol})")
break
# using Anderson acceleration of the primal variable for faster
# convergence
if use_accel:
last_K_X[i % (K + 1)] = X
if i % (K + 1) == K:
for k in range(K):
U[k] = last_K_X[k + 1].ravel() - last_K_X[k].ravel()
C = U @ U.T
# at least on ARM64 we can't rely on np.linalg.solve to
# reliably raise LinAlgError here, so use SVD instead
# equivalent to:
# z = np.linalg.solve(C, np.ones(K))
u, s, _ = np.linalg.svd(C, hermitian=True)
if s[-1] <= 1e-6 * s[0] or not np.isfinite(s).all():
logger.debug("Iteration %d: LinAlg Error", i + 1)
continue
z = ((u * 1 / s) @ u.T).sum(0)
c = z / z.sum()
X_acc = np.sum(last_K_X[:-1] * c[:, None, None], axis=0)
_grp_norm2_acc = groups_norm2(X_acc, n_orient)
active_set_acc = _grp_norm2_acc != 0
if n_orient > 1:
active_set_acc = np.kron(
active_set_acc, np.ones(n_orient, dtype=bool)
)
p_obj = _primal_l21(M, G, X[active_set], active_set, alpha, n_orient)[0]
p_obj_acc = _primal_l21(
M, G, X_acc[active_set_acc], active_set_acc, alpha, n_orient
)[0]
if p_obj_acc < p_obj:
X = X_acc
active_set = active_set_acc
R = M - G[:, active_set] @ X[active_set]
X = X[active_set]
return X, active_set, E
def _bcd(G, X, R, active_set, one_ovr_lc, n_orient, alpha_lc, list_G_j_c):
"""Implement one full pass of BCD.
BCD stands for Block Coordinate Descent.
This function make use of scipy.linalg.get_blas_funcs to speed reasons.
Parameters
----------
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_sources, n_times)
Sources, modified in place.
R : array, shape (n_sensors, n_times)
The residuals: R = M - G @ X, modified in place.
active_set : array of bool, shape (n_sources, )
Mask of active sources, modified in place.
one_ovr_lc : array, shape (n_positions, )
One over the lipschitz constants.
n_orient : int
Number of dipoles per positions (typically 1 or 3).
n_positions : int
Number of source positions.
alpha_lc: array, shape (n_positions, )
alpha * (Lipschitz constants).
"""
X_j_new = np.zeros_like(X[:n_orient, :], order="C")
dgemm = _get_dgemm()
for j, G_j_c in enumerate(list_G_j_c):
idx = slice(j * n_orient, (j + 1) * n_orient)
G_j = G[:, idx]
X_j = X[idx]
dgemm(
alpha=one_ovr_lc[j], beta=0.0, a=R.T, b=G_j, c=X_j_new.T, overwrite_c=True
)
# X_j_new = G_j.T @ R
# Mathurin's trick to avoid checking all the entries
was_non_zero = X_j[0, 0] != 0
# was_non_zero = np.any(X_j)
if was_non_zero:
dgemm(alpha=1.0, beta=1.0, a=X_j.T, b=G_j_c.T, c=R.T, overwrite_c=True)
# R += np.dot(G_j, X_j)
X_j_new += X_j
block_norm = sqrt(sum_squared(X_j_new))
if block_norm <= alpha_lc[j]:
X_j.fill(0.0)
active_set[idx] = False
else:
shrink = max(1.0 - alpha_lc[j] / block_norm, 0.0)
X_j_new *= shrink
dgemm(alpha=-1.0, beta=1.0, a=X_j_new.T, b=G_j_c.T, c=R.T, overwrite_c=True)
# R -= np.dot(G_j, X_j_new)
X_j[:] = X_j_new
active_set[idx] = True
@verbose
def mixed_norm_solver(
M,
G,
alpha,
maxit=3000,
tol=1e-8,
verbose=None,
active_set_size=50,
debias=True,
n_orient=1,
solver="auto",
return_gap=False,
dgap_freq=10,
active_set_init=None,
X_init=None,
):
"""Solve L1/L2 mixed-norm inverse problem with active set strategy.
See references :footcite:`GramfortEtAl2012,StrohmeierEtAl2016,
BertrandEtAl2020`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
%(verbose)s
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
solver : 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization. Block Coordinate Descent
(BCD) uses Anderson acceleration for faster convergence.
return_gap : bool
Return final duality gap.
dgap_freq : int
The duality gap is computed every dgap_freq iterations of the solver on
the active set.
active_set_init : array, shape (n_dipoles,) or None
The initial active set (boolean array) used at the first iteration.
If None, the usual active set strategy is applied.
X_init : array, shape (n_dipoles, n_times) or None
The initial weight matrix used for warm starting the solver. If None,
the weights are initialized at zero.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array, shape (new_active_set_size,)
The mask of active sources. Note that new_active_set_size is the size
of the active set after convergence of the solver.
E : list
The value of the objective function over the iterations.
gap : float
Final duality gap. Returned only if return_gap is True.
References
----------
.. footbibliography::
"""
n_dipoles = G.shape[1]
n_positions = n_dipoles // n_orient
_, n_times = M.shape
alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False)
logger.info(f"-- ALPHA MAX : {alpha_max}")
alpha = float(alpha)
X = np.zeros((n_dipoles, n_times), dtype=G.dtype)
has_sklearn = True
try:
from sklearn.linear_model import MultiTaskLasso # noqa: F401
except ImportError:
has_sklearn = False
_validate_type(solver, str, "solver")
_check_option("solver", solver, ("cd", "bcd", "auto"))
if solver == "auto":
if has_sklearn and (n_orient == 1):
solver = "cd"
else:
solver = "bcd"
if solver == "cd":
if n_orient == 1 and not has_sklearn:
warn(
"Scikit-learn >= 0.12 cannot be found. Using block coordinate"
" descent instead of coordinate descent."
)
solver = "bcd"
if n_orient > 1:
warn(
"Coordinate descent is only available for fixed orientation. "
"Using block coordinate descent instead of coordinate "
"descent"
)
solver = "bcd"
if solver == "cd":
logger.info("Using coordinate descent")
l21_solver = _mixed_norm_solver_cd
lc = None
else:
assert solver == "bcd"
logger.info("Using block coordinate descent")
l21_solver = _mixed_norm_solver_bcd
G = np.asfortranarray(G)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient) : ((j + 1) * n_orient)]
lc[j] = np.linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
if active_set_size is not None:
E = list()
highest_d_obj = -np.inf
if X_init is not None and X_init.shape != (n_dipoles, n_times):
raise ValueError("Wrong dim for initialized coefficients.")
active_set = (
active_set_init
if active_set_init is not None
else np.zeros(n_dipoles, dtype=bool)
)
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, M), n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (
n_orient * new_active_idx[:, None] + np.arange(n_orient)[None, :]
).ravel()
active_set[new_active_idx] = True
as_size = np.sum(active_set)
gap = np.inf
for k in range(maxit):
if solver == "bcd":
lc_tmp = lc[active_set[::n_orient]]
elif solver == "cd":
lc_tmp = None
else:
lc_tmp = 1.01 * np.linalg.norm(G[:, active_set], ord=2) ** 2
X, as_, _ = l21_solver(
M,
G[:, active_set],
alpha,
lc_tmp,
maxit=maxit,
tol=tol,
init=X_init,
n_orient=n_orient,
dgap_freq=dgap_freq,
)
active_set[active_set] = as_.copy()
idx_old_active_set = np.where(active_set)[0]
_, p_obj, d_obj, R = dgap_l21(M, G, X, active_set, alpha, n_orient)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.info(
"Iteration %d :: p_obj %f :: dgap %f :: n_active_start %d :: n_active_"
"end %d",
k + 1,
p_obj,
gap,
as_size // n_orient,
np.sum(active_set) // n_orient,
)
if gap < tol:
logger.info(f"Convergence reached ! (gap: {gap} < {tol})")
break
# add sources if not last iteration
if k < (maxit - 1):
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, R), n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (
n_orient * new_active_idx[:, None]
+ np.arange(n_orient)[None, :]
)
new_active_idx = new_active_idx.ravel()
active_set[new_active_idx] = True
idx_active_set = np.where(active_set)[0]
as_size = np.sum(active_set)
X_init = np.zeros((as_size, n_times), dtype=X.dtype)
idx = np.searchsorted(idx_active_set, idx_old_active_set)
X_init[idx] = X
else:
warn(f"Did NOT converge ! (gap: {gap} > {tol})")
else:
X, active_set, E = l21_solver(
M, G, alpha, lc, maxit=maxit, tol=tol, n_orient=n_orient, init=None
)
if return_gap:
gap = dgap_l21(M, G, X, active_set, alpha, n_orient)[0]
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
logger.info("Final active set size: %s" % (np.sum(active_set) // n_orient))
if return_gap:
return X, active_set, E, gap
else:
return X, active_set, E
@verbose
def iterative_mixed_norm_solver(
M,
G,
alpha,
n_mxne_iter,
maxit=3000,
tol=1e-8,
verbose=None,
active_set_size=50,
debias=True,
n_orient=1,
dgap_freq=10,
solver="auto",
weight_init=None,
):
"""Solve L0.5/L2 mixed-norm inverse problem with active set strategy.
See reference :footcite:`StrohmeierEtAl2016`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
n_mxne_iter : int
The number of MxNE iterations. If > 1, iterative reweighting
is applied.
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
%(verbose)s
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
solver : 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization.
weight_init : array, shape (n_dipoles,) or None
The initial weight used for reweighting the gain matrix. If None, the
weights are initialized with ones.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function over the iterations.
References
----------
.. footbibliography::
"""
def g(w):
return np.sqrt(np.sqrt(groups_norm2(w.copy(), n_orient)))
def gprime(w):
return 2.0 * np.repeat(g(w), n_orient).ravel()
E = list()
if weight_init is not None and weight_init.shape != (G.shape[1],):
raise ValueError(
f"Wrong dimension for weight initialization. Got {weight_init.shape}. "
f"Expected {(G.shape[1],)}."
)
weights = weight_init if weight_init is not None else np.ones(G.shape[1])
active_set = weights != 0
weights = weights[active_set]
X = np.zeros((G.shape[1], M.shape[1]))
for k in range(n_mxne_iter):
X0 = X.copy()
active_set_0 = active_set.copy()
G_tmp = G[:, active_set] * weights[np.newaxis, :]
if active_set_size is not None:
if np.sum(active_set) > (active_set_size * n_orient):
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=active_set_size,
dgap_freq=dgap_freq,
solver=solver,
)
else:
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=None,
dgap_freq=dgap_freq,
solver=solver,
)
else:
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=None,
dgap_freq=dgap_freq,
solver=solver,
)
logger.info("active set size %d", _active_set.sum() / n_orient)
if _active_set.sum() > 0:
active_set[active_set] = _active_set
# Reapply weights to have correct unit
X *= weights[_active_set][:, np.newaxis]
weights = gprime(X)
p_obj = 0.5 * np.linalg.norm(
M - np.dot(G[:, active_set], X), "fro"
) ** 2.0 + alpha * np.sum(g(X))
E.append(p_obj)
# Check convergence
if (
(k >= 1)
and np.all(active_set == active_set_0)
and np.all(np.abs(X - X0) < tol)
):
logger.info("Convergence reached after %d reweightings!", k)
break
else:
active_set = np.zeros_like(active_set)
p_obj = 0.5 * np.linalg.norm(M) ** 2.0
E.append(p_obj)
break
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
return X, active_set, E
###############################################################################
# TF-MxNE
class _Phi:
"""Have phi stft as callable w/o using a lambda that does not pickle."""
def __init__(self, wsize, tstep, n_coefs, n_times):
self.wsize = np.atleast_1d(wsize)
self.tstep = np.atleast_1d(tstep)
self.n_coefs = np.atleast_1d(n_coefs)
self.n_dicts = len(tstep)
self.n_freqs = wsize // 2 + 1
self.n_steps = self.n_coefs // self.n_freqs
self.n_times = n_times
# ravel freq+time here
self.ops = list()
for ws, ts in zip(self.wsize, self.tstep):
self.ops.append(
stft(np.eye(n_times), ws, ts, verbose=False).reshape(n_times, -1)
)
def __call__(self, x): # noqa: D105
if self.n_dicts == 1:
return x @ self.ops[0]
else:
return np.hstack([x @ op for op in self.ops]) / np.sqrt(self.n_dicts)
def norm(self, z, ord=2): # noqa: A002
"""Squared L2 norm if ord == 2 and L1 norm if order == 1."""
if ord not in (1, 2):
raise ValueError(f"Only supported norm order are 1 and 2. Got ord = {ord}")
stft_norm = stft_norm1 if ord == 1 else stft_norm2
norm = 0.0
if len(self.n_coefs) > 1:
z_ = np.array_split(np.atleast_2d(z), np.cumsum(self.n_coefs)[:-1], axis=1)
else:
z_ = [np.atleast_2d(z)]
for i in range(len(z_)):
norm += stft_norm(z_[i].reshape(-1, self.n_freqs[i], self.n_steps[i]))
return norm
class _PhiT:
"""Have phi.T istft as callable w/o using a lambda that does not pickle."""
def __init__(self, tstep, n_freqs, n_steps, n_times):
self.tstep = tstep
self.n_freqs = n_freqs
self.n_steps = n_steps
self.n_times = n_times
self.n_dicts = len(tstep) if isinstance(tstep, np.ndarray) else 1
self.n_coefs = list()
self.op_re = list()
self.op_im = list()
for nf, ns, ts in zip(self.n_freqs, self.n_steps, self.tstep):
nc = nf * ns
self.n_coefs.append(nc)
eye = np.eye(nc).reshape(nf, ns, nf, ns)
self.op_re.append(istft(eye, ts, n_times).reshape(nc, n_times))
self.op_im.append(istft(eye * 1j, ts, n_times).reshape(nc, n_times))
def __call__(self, z): # noqa: D105
if self.n_dicts == 1:
return z.real @ self.op_re[0] + z.imag @ self.op_im[0]
else:
x_out = np.zeros((z.shape[0], self.n_times))
z_ = np.array_split(z, np.cumsum(self.n_coefs)[:-1], axis=1)
for this_z, op_re, op_im in zip(z_, self.op_re, self.op_im):
x_out += this_z.real @ op_re + this_z.imag @ op_im
return x_out / np.sqrt(self.n_dicts)
def norm_l21_tf(Z, phi, n_orient, w_space=None):
"""L21 norm for TF."""
if Z.shape[0]:
l21_norm = np.sqrt(phi.norm(Z, ord=2).reshape(-1, n_orient).sum(axis=1))
if w_space is not None:
l21_norm *= w_space
l21_norm = l21_norm.sum()
else:
l21_norm = 0.0
return l21_norm
def norm_l1_tf(Z, phi, n_orient, w_time):
"""L1 norm for TF."""
if Z.shape[0]:
n_positions = Z.shape[0] // n_orient
Z_ = np.sqrt(
np.sum((np.abs(Z) ** 2.0).reshape((n_orient, -1), order="F"), axis=0)
)
Z_ = Z_.reshape((n_positions, -1), order="F")
if w_time is not None:
Z_ *= w_time
l1_norm = phi.norm(Z_, ord=1).sum()
else:
l1_norm = 0.0
return l1_norm
def norm_epsilon(Y, l1_ratio, phi, w_space=1.0, w_time=None):
"""Weighted epsilon norm.
The weighted epsilon norm is the dual norm of::
w_{space} * (1. - l1_ratio) * ||Y||_2 + l1_ratio * ||Y||_{1, w_{time}}.
where `||Y||_{1, w_{time}} = (np.abs(Y) * w_time).sum()`
Warning: it takes into account the fact that Y only contains coefficients
corresponding to the positive frequencies (see `stft_norm2()`): some
entries will be counted twice. It is also assumed that all entries of both
Y and w_time are non-negative. See
:footcite:`NdiayeEtAl2016,BurdakovMerkulov2001`.
Parameters
----------
Y : array, shape (n_coefs,)
The input data.
l1_ratio : float between 0 and 1
Tradeoff between L2 and L1 regularization. When it is 0, no temporal
regularization is applied.
phi : instance of _Phi
The TF operator.
w_space : float
Scalar weight of the L2 norm. By default, it is taken equal to 1.
w_time : array, shape (n_coefs, ) | None
Weights of each TF coefficient in the L1 norm. If None, weights equal
to 1 are used.
Returns
-------
nu : float
The value of the dual norm evaluated at Y.
References
----------
.. footbibliography::
"""
# since the solution is invariant to flipped signs in Y, all entries
# of Y are assumed positive
# Add negative freqs: count all freqs twice except first and last:
freqs_count = np.full(len(Y), 2)
for i, fc in enumerate(np.array_split(freqs_count, np.cumsum(phi.n_coefs)[:-1])):
fc[: phi.n_steps[i]] = 1
fc[-phi.n_steps[i] :] = 1
# exclude 0 weights:
if w_time is not None:
nonzero_weights = w_time != 0.0
Y = Y[nonzero_weights]
freqs_count = freqs_count[nonzero_weights]
w_time = w_time[nonzero_weights]
norm_inf_Y = np.max(Y / w_time) if w_time is not None else np.max(Y)
if l1_ratio == 1.0:
# dual norm of L1 weighted is Linf with inverse weights
return norm_inf_Y
elif l1_ratio == 0.0:
# dual norm of L2 is L2
return np.sqrt(phi.norm(Y[None, :], ord=2).sum())
if norm_inf_Y == 0.0:
return 0.0
# ignore some values of Y by lower bound on dual norm:
if w_time is None:
idx = Y > l1_ratio * norm_inf_Y
else:
idx = Y > l1_ratio * np.max(
Y / (w_space * (1.0 - l1_ratio) + l1_ratio * w_time)
)
if idx.sum() == 1:
return norm_inf_Y
# sort both Y / w_time and freqs_count at the same time
if w_time is not None:
idx_sort = np.argsort(Y[idx] / w_time[idx])[::-1]
w_time = w_time[idx][idx_sort]
else:
idx_sort = np.argsort(Y[idx])[::-1]
Y = Y[idx][idx_sort]
freqs_count = freqs_count[idx][idx_sort]
Y = np.repeat(Y, freqs_count)
if w_time is not None:
w_time = np.repeat(w_time, freqs_count)
K = Y.shape[0]
if w_time is None:
p_sum_Y2 = np.cumsum(Y**2)
p_sum_w2 = np.arange(1, K + 1)
p_sum_Yw = np.cumsum(Y)
upper = p_sum_Y2 / Y**2 - 2.0 * p_sum_Yw / Y + p_sum_w2
else:
p_sum_Y2 = np.cumsum(Y**2)
p_sum_w2 = np.cumsum(w_time**2)
p_sum_Yw = np.cumsum(Y * w_time)
upper = p_sum_Y2 / (Y / w_time) ** 2 - 2.0 * p_sum_Yw / (Y / w_time) + p_sum_w2
upper_greater = np.where(upper > w_space**2 * (1.0 - l1_ratio) ** 2 / l1_ratio**2)[
0
]
i0 = upper_greater[0] - 1 if upper_greater.size else K - 1
p_sum_Y2 = p_sum_Y2[i0]
p_sum_w2 = p_sum_w2[i0]
p_sum_Yw = p_sum_Yw[i0]
denom = l1_ratio**2 * p_sum_w2 - w_space**2 * (1.0 - l1_ratio) ** 2
if np.abs(denom) < 1e-10:
return p_sum_Y2 / (2.0 * l1_ratio * p_sum_Yw)
else:
delta = (l1_ratio * p_sum_Yw) ** 2 - p_sum_Y2 * denom
return (l1_ratio * p_sum_Yw - np.sqrt(delta)) / denom
def norm_epsilon_inf(G, R, phi, l1_ratio, n_orient, w_space=None, w_time=None):
"""Weighted epsilon-inf norm of phi(np.dot(G.T, R)).
Parameters
----------
G : array, shape (n_sensors, n_sources)
Gain matrix a.k.a. lead field.
R : array, shape (n_sensors, n_times)
Residual.
phi : instance of _Phi
The TF operator.
l1_ratio : float between 0 and 1
Parameter controlling the tradeoff between L21 and L1 regularization.
0 corresponds to an absence of temporal regularization, ie MxNE.
n_orient : int
Number of dipoles per location (typically 1 or 3).
w_space : array, shape (n_positions,) or None.
Weights for the L2 term of the epsilon norm. If None, weights are
all equal to 1.
w_time : array, shape (n_positions, n_coefs) or None
Weights for the L1 term of the epsilon norm. If None, weights are
all equal to 1.
Returns
-------
nu : float
The maximum value of the epsilon norms over groups of n_orient dipoles
(consecutive rows of phi(np.dot(G.T, R))).
"""
n_positions = G.shape[1] // n_orient
GTRPhi = np.abs(phi(np.dot(G.T, R)))
# norm over orientations:
GTRPhi = GTRPhi.reshape((n_orient, -1), order="F")
GTRPhi = np.linalg.norm(GTRPhi, axis=0)
GTRPhi = GTRPhi.reshape((n_positions, -1), order="F")
nu = 0.0
for idx in range(n_positions):
GTRPhi_ = GTRPhi[idx]
w_t = w_time[idx] if w_time is not None else None
w_s = w_space[idx] if w_space is not None else 1.0
norm_eps = norm_epsilon(GTRPhi_, l1_ratio, phi, w_space=w_s, w_time=w_t)
if norm_eps > nu:
nu = norm_eps
return nu
def dgap_l21l1(
M,
G,
Z,
active_set,
alpha_space,
alpha_time,
phi,
phiT,
n_orient,
highest_d_obj,
w_space=None,
w_time=None,
):
"""Duality gap for the time-frequency mixed norm inverse problem.
See :footcite:`GramfortEtAl2012,NdiayeEtAl2016`
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_sources)
Gain matrix a.k.a. lead field.
Z : array, shape (n_active, n_coefs)
Sources in TF domain.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
alpha_space : float
The spatial regularization parameter.
alpha_time : float
The temporal regularization parameter. The higher it is the smoother
will be the estimated time series.
phi : instance of _Phi
The TF operator.
phiT : instance of _PhiT
The transpose of the TF operator.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
highest_d_obj : float
The highest value of the dual objective so far.
w_space : array, shape (n_positions, )
Array of spatial weights.
w_time : array, shape (n_positions, n_coefs)
Array of TF weights.
Returns
-------
gap : float
Dual gap
p_obj : float
Primal objective
d_obj : float
Dual objective. gap = p_obj - d_obj
R : array, shape (n_sensors, n_times)
Current residual (M - G * X)
References
----------
.. footbibliography::
"""
X = phiT(Z)
GX = np.dot(G[:, active_set], X)
R = M - GX
# some functions need w_time only on active_set, other need it completely
if w_time is not None:
w_time_as = w_time[active_set[::n_orient]]
else:
w_time_as = None
if w_space is not None:
w_space_as = w_space[active_set[::n_orient]]
else:
w_space_as = None
penaltyl1 = norm_l1_tf(Z, phi, n_orient, w_time_as)
penaltyl21 = norm_l21_tf(Z, phi, n_orient, w_space_as)
nR2 = sum_squared(R)
p_obj = 0.5 * nR2 + alpha_space * penaltyl21 + alpha_time * penaltyl1
l1_ratio = alpha_time / (alpha_space + alpha_time)
dual_norm = norm_epsilon_inf(
G, R, phi, l1_ratio, n_orient, w_space=w_space, w_time=w_time
)
scaling = min(1.0, (alpha_space + alpha_time) / dual_norm)
d_obj = (scaling - 0.5 * (scaling**2)) * nR2 + scaling * np.sum(R * GX)
d_obj = max(d_obj, highest_d_obj)
gap = p_obj - d_obj
return gap, p_obj, d_obj, R
def _tf_mixed_norm_solver_bcd_(
M,
G,
Z,
active_set,
candidates,
alpha_space,
alpha_time,
lipschitz_constant,
phi,
phiT,
*,
w_space=None,
w_time=None,
n_orient=1,
maxit=200,
tol=1e-8,
dgap_freq=10,
perc=None,
):
n_sources = G.shape[1]
n_positions = n_sources // n_orient
# First make G fortran for faster access to blocks of columns
Gd = np.asfortranarray(G)
G = np.ascontiguousarray(Gd.T.reshape(n_positions, n_orient, -1).transpose(0, 2, 1))
R = M.copy() # residual
active = np.where(active_set[::n_orient])[0]
for idx in active:
R -= np.dot(G[idx], phiT(Z[idx]))
E = [] # track primal objective function
if w_time is None:
alpha_time_lc = alpha_time / lipschitz_constant
else:
alpha_time_lc = alpha_time * w_time / lipschitz_constant[:, None]
if w_space is None:
alpha_space_lc = alpha_space / lipschitz_constant
else:
alpha_space_lc = alpha_space * w_space / lipschitz_constant
converged = False
d_obj = -np.inf
for i in range(maxit):
for jj in candidates:
ids = jj * n_orient
ide = ids + n_orient
G_j = G[jj]
Z_j = Z[jj]
active_set_j = active_set[ids:ide]
was_active = np.any(active_set_j)
# gradient step
GTR = np.dot(G_j.T, R) / lipschitz_constant[jj]
X_j_new = GTR.copy()
if was_active:
X_j = phiT(Z_j)
R += np.dot(G_j, X_j)
X_j_new += X_j
rows_norm = np.linalg.norm(X_j_new, "fro")
if rows_norm <= alpha_space_lc[jj]:
if was_active:
Z[jj] = 0.0
active_set_j[:] = False
else:
GTR_phi = phi(GTR)
if was_active:
Z_j_new = Z_j + GTR_phi
else:
Z_j_new = GTR_phi
col_norm = np.linalg.norm(Z_j_new, axis=0)
if np.all(col_norm <= alpha_time_lc[jj]):
Z[jj] = 0.0
active_set_j[:] = False
else:
# l1
shrink = np.maximum(
1.0
- alpha_time_lc[jj] / np.maximum(col_norm, alpha_time_lc[jj]),
0.0,
)
if w_time is not None:
shrink[w_time[jj] == 0.0] = 0.0
Z_j_new *= shrink[np.newaxis, :]
# l21
shape_init = Z_j_new.shape
row_norm = np.sqrt(phi.norm(Z_j_new, ord=2).sum())
if row_norm <= alpha_space_lc[jj]:
Z[jj] = 0.0
active_set_j[:] = False
else:
shrink = np.maximum(
1.0
- alpha_space_lc[jj]
/ np.maximum(row_norm, alpha_space_lc[jj]),
0.0,
)
Z_j_new *= shrink
Z[jj] = Z_j_new.reshape(-1, *shape_init[1:]).copy()
active_set_j[:] = True
Z_j_phi_T = phiT(Z[jj])
R -= np.dot(G_j, Z_j_phi_T)
if (i + 1) % dgap_freq == 0:
Zd = np.vstack([Z[pos] for pos in range(n_positions) if np.any(Z[pos])])
gap, p_obj, d_obj, _ = dgap_l21l1(
M,
Gd,
Zd,
active_set,
alpha_space,
alpha_time,
phi,
phiT,
n_orient,
d_obj,
w_space=w_space,
w_time=w_time,
)
converged = gap < tol
E.append(p_obj)
logger.info(
"\n Iteration %d :: n_active %d",
i + 1,
np.sum(active_set) / n_orient,
)
logger.info(f" dgap {gap:.2e} :: p_obj {p_obj} :: d_obj {d_obj}")
if converged:
break
if perc is not None:
if np.sum(active_set) / float(n_orient) <= perc * n_positions:
break
return Z, active_set, E, converged
def _tf_mixed_norm_solver_bcd_active_set(
M,
G,
alpha_space,
alpha_time,
lipschitz_constant,
phi,
phiT,
*,
Z_init=None,
w_space=None,
w_time=None,
n_orient=1,
maxit=200,
tol=1e-8,
dgap_freq=10,
):
n_sensors, n_times = M.shape
n_sources = G.shape[1]
n_positions = n_sources // n_orient
Z = dict.fromkeys(np.arange(n_positions), 0.0)
active_set = np.zeros(n_sources, dtype=bool)
active = []
if Z_init is not None:
if Z_init.shape != (n_sources, phi.n_coefs.sum()):
raise Exception(
"Z_init must be None or an array with shape (n_sources, n_coefs)."
)
for ii in range(n_positions):
if np.any(Z_init[ii * n_orient : (ii + 1) * n_orient]):
active_set[ii * n_orient : (ii + 1) * n_orient] = True
active.append(ii)
if len(active):
Z.update(dict(zip(active, np.vsplit(Z_init[active_set], len(active)))))
E = []
candidates = range(n_positions)
d_obj = -np.inf
while True:
# single BCD pass on all positions:
Z_init = dict.fromkeys(np.arange(n_positions), 0.0)
Z_init.update(dict(zip(active, Z.values())))
Z, active_set, E_tmp, _ = _tf_mixed_norm_solver_bcd_(
M,
G,
Z_init,
active_set,
candidates,
alpha_space,
alpha_time,
lipschitz_constant,
phi,
phiT,
w_space=w_space,
w_time=w_time,
n_orient=n_orient,
maxit=1,
tol=tol,
perc=None,
)
E += E_tmp
# multiple BCD pass on active positions:
active = np.where(active_set[::n_orient])[0]
Z_init = dict(zip(range(len(active)), [Z[idx] for idx in active]))
candidates_ = range(len(active))
if w_space is not None:
w_space_as = w_space[active_set[::n_orient]]
else:
w_space_as = None
if w_time is not None:
w_time_as = w_time[active_set[::n_orient]]
else:
w_time_as = None
Z, as_, E_tmp, converged = _tf_mixed_norm_solver_bcd_(
M,
G[:, active_set],
Z_init,
np.ones(len(active) * n_orient, dtype=bool),
candidates_,
alpha_space,
alpha_time,
lipschitz_constant[active_set[::n_orient]],
phi,
phiT,
w_space=w_space_as,
w_time=w_time_as,
n_orient=n_orient,
maxit=maxit,
tol=tol,
dgap_freq=dgap_freq,
perc=0.5,
)
active = np.where(active_set[::n_orient])[0]
active_set[active_set] = as_.copy()
E += E_tmp
converged = True
if converged:
Zd = np.vstack([Z[pos] for pos in range(len(Z)) if np.any(Z[pos])])
gap, p_obj, d_obj, _ = dgap_l21l1(
M,
G,
Zd,
active_set,
alpha_space,
alpha_time,
phi,
phiT,
n_orient,
d_obj,
w_space,
w_time,
)
logger.info(
"\ndgap %.2e :: p_obj %f :: d_obj %f :: n_active %d",
gap,
p_obj,
d_obj,
np.sum(active_set) / n_orient,
)
if gap < tol:
logger.info("\nConvergence reached!\n")
break
if active_set.sum():
Z = np.vstack([Z[pos] for pos in range(len(Z)) if np.any(Z[pos])])
X = phiT(Z)
else:
Z = np.zeros((0, phi.n_coefs.sum()), dtype=np.complex128)
X = np.zeros((0, n_times))
return X, Z, active_set, E, gap
@verbose
def tf_mixed_norm_solver(
M,
G,
alpha_space,
alpha_time,
wsize=64,
tstep=4,
n_orient=1,
maxit=200,
tol=1e-8,
active_set_size=None,
debias=True,
return_gap=False,
dgap_freq=10,
verbose=None,
):
"""Solve TF L21+L1 inverse solver with BCD and active set approach.
See :footcite:`GramfortEtAl2013b,GramfortEtAl2011,BekhtiEtAl2016`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha_space : float
The spatial regularization parameter.
alpha_time : float
The temporal regularization parameter. The higher it is the smoother
will be the estimated time series.
wsize: int or array-like
Length of the STFT window in samples (must be a multiple of 4).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep) and each entry of wsize must be a multiple
of 4.
tstep: int or array-like
Step between successive windows in samples (must be a multiple of 2,
a divider of wsize and smaller than wsize/2) (default: wsize/2).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep), and each entry of tstep must be a multiple
of 2 and divide the corresponding entry of wsize.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
maxit : int
The number of iterations.
tol : float
If absolute difference between estimates at 2 successive iterations
is lower than tol, the convergence is reached.
debias : bool
Debias source estimates.
return_gap : bool
Return final duality gap.
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
%(verbose)s
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function every dgap_freq iteration. If
log_objective is False or dgap_freq is np.inf, it will be empty.
gap : float
Final duality gap. Returned only if return_gap is True.
References
----------
.. footbibliography::
"""
n_sensors, n_times = M.shape
n_sensors, n_sources = G.shape
n_positions = n_sources // n_orient
tstep = np.atleast_1d(tstep)
wsize = np.atleast_1d(wsize)
if len(tstep) != len(wsize):
raise ValueError(
"The same number of window sizes and steps must be "
f"passed. Got tstep = {tstep} and wsize = {wsize}"
)
n_steps = np.ceil(M.shape[1] / tstep.astype(float)).astype(int)
n_freqs = wsize // 2 + 1
n_coefs = n_steps * n_freqs
phi = _Phi(wsize, tstep, n_coefs, n_times)
phiT = _PhiT(tstep, n_freqs, n_steps, n_times)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient) : ((j + 1) * n_orient)]
lc[j] = np.linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
logger.info("Using block coordinate descent with active set approach")
X, Z, active_set, E, gap = _tf_mixed_norm_solver_bcd_active_set(
M,
G,
alpha_space,
alpha_time,
lc,
phi,
phiT,
Z_init=None,
n_orient=n_orient,
maxit=maxit,
tol=tol,
dgap_freq=dgap_freq,
)
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
if return_gap:
return X, active_set, E, gap
else:
return X, active_set, E
def iterative_tf_mixed_norm_solver(
M,
G,
alpha_space,
alpha_time,
n_tfmxne_iter,
wsize=64,
tstep=4,
maxit=3000,
tol=1e-8,
debias=True,
n_orient=1,
dgap_freq=10,
verbose=None,
):
"""Solve TF L0.5/L1 + L0.5 inverse problem with BCD + active set approach.
Parameters
----------
M: array, shape (n_sensors, n_times)
The data.
G: array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha_space: float
The spatial regularization parameter. The higher it is the less there
will be active sources.
alpha_time : float
The temporal regularization parameter. The higher it is the smoother
will be the estimated time series. 0 means no temporal regularization,
a.k.a. irMxNE.
n_tfmxne_iter : int
Number of TF-MxNE iterations. If > 1, iterative reweighting is applied.
wsize : int or array-like
Length of the STFT window in samples (must be a multiple of 4).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep) and each entry of wsize must be a multiple
of 4.
tstep : int or array-like
Step between successive windows in samples (must be a multiple of 2,
a divider of wsize and smaller than wsize/2) (default: wsize/2).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep), and each entry of tstep must be a multiple
of 2 and divide the corresponding entry of wsize.
maxit : int
The maximum number of iterations for each TF-MxNE problem.
tol : float
If absolute difference between estimates at 2 successive iterations
is lower than tol, the convergence is reached. Also used as criterion
on duality gap for each TF-MxNE problem.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
%(verbose)s
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function over iterations.
"""
n_sensors, n_times = M.shape
n_sources = G.shape[1]
n_positions = n_sources // n_orient
tstep = np.atleast_1d(tstep)
wsize = np.atleast_1d(wsize)
if len(tstep) != len(wsize):
raise ValueError(
"The same number of window sizes and steps must be "
f"passed. Got tstep = {tstep} and wsize = {wsize}"
)
n_steps = np.ceil(n_times / tstep.astype(float)).astype(int)
n_freqs = wsize // 2 + 1
n_coefs = n_steps * n_freqs
phi = _Phi(wsize, tstep, n_coefs, n_times)
phiT = _PhiT(tstep, n_freqs, n_steps, n_times)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient) : ((j + 1) * n_orient)]
lc[j] = np.linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
# space and time penalties, and inverse of their derivatives:
def g_space(Z):
return np.sqrt(np.sqrt(phi.norm(Z, ord=2).reshape(-1, n_orient).sum(axis=1)))
def g_space_prime_inv(Z):
return 2.0 * g_space(Z)
def g_time(Z):
return np.sqrt(
np.sqrt(
np.sum((np.abs(Z) ** 2.0).reshape((n_orient, -1), order="F"), axis=0)
).reshape((-1, Z.shape[1]), order="F")
)
def g_time_prime_inv(Z):
return 2.0 * g_time(Z)
E = list()
active_set = np.ones(n_sources, dtype=bool)
Z = np.zeros((n_sources, phi.n_coefs.sum()), dtype=np.complex128)
for k in range(n_tfmxne_iter):
active_set_0 = active_set.copy()
Z0 = Z.copy()
if k == 0:
w_space = None
w_time = None
else:
w_space = 1.0 / g_space_prime_inv(Z)
w_time = g_time_prime_inv(Z)
w_time[w_time == 0.0] = -1.0
w_time = 1.0 / w_time
w_time[w_time < 0.0] = 0.0
X, Z, active_set_, _, _ = _tf_mixed_norm_solver_bcd_active_set(
M,
G[:, active_set],
alpha_space,
alpha_time,
lc[active_set[::n_orient]],
phi,
phiT,
Z_init=Z,
w_space=w_space,
w_time=w_time,
n_orient=n_orient,
maxit=maxit,
tol=tol,
dgap_freq=dgap_freq,
)
active_set[active_set] = active_set_
if active_set.sum() > 0:
l21_penalty = np.sum(g_space(Z.copy()))
l1_penalty = phi.norm(g_time(Z.copy()), ord=1).sum()
p_obj = (
0.5 * np.linalg.norm(M - np.dot(G[:, active_set], X), "fro") ** 2.0
+ alpha_space * l21_penalty
+ alpha_time * l1_penalty
)
E.append(p_obj)
logger.info(
"Iteration %d: active set size=%d, E=%f",
k + 1,
active_set.sum() / n_orient,
p_obj,
)
# Check convergence
if np.array_equal(active_set, active_set_0):
max_diff = np.amax(np.abs(Z - Z0))
if max_diff < tol:
logger.info("Convergence reached after %d reweightings!", k)
break
else:
p_obj = 0.5 * np.linalg.norm(M) ** 2.0
E.append(p_obj)
logger.info(
"Iteration %d: as_size=%d, E=%f",
k + 1,
active_set.sum() / n_orient,
p_obj,
)
break
if debias:
if active_set.sum() > 0:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
return X, active_set, E