[074d3d]: / mne / decoding / tests / test_base.py

Download this file

490 lines (431 with data), 17.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import platform
from contextlib import nullcontext
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
)
pytest.importorskip("sklearn")
from sklearn import svm
from sklearn.base import (
BaseEstimator as sklearn_BaseEstimator,
)
from sklearn.base import (
TransformerMixin as sklearn_TransformerMixin,
)
from sklearn.base import (
is_classifier,
is_regressor,
)
from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge
from sklearn.model_selection import (
GridSearchCV,
KFold,
StratifiedKFold,
cross_val_score,
)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils.estimator_checks import parametrize_with_checks
from mne import EpochsArray, create_info
from mne.decoding import GeneralizingEstimator, Scaler, TransformerMixin, Vectorizer
from mne.decoding.base import (
BaseEstimator,
LinearModel,
_get_inverse_funcs,
cross_val_multiscore,
get_coef,
)
from mne.decoding.search_light import SlidingEstimator
def _make_data(n_samples=1000, n_features=5, n_targets=3):
"""Generate some testing data.
Parameters
----------
n_samples : int
The number of samples.
n_features : int
The number of features.
n_targets : int
The number of targets.
Returns
-------
X : ndarray, shape (n_samples, n_features)
The measured data.
Y : ndarray, shape (n_samples, n_targets)
The latent variables generating the data.
A : ndarray, shape (n_features, n_targets)
The forward model, mapping the latent variables (=Y) to the measured
data (=X).
"""
# Define Y latent factors
np.random.seed(0)
cov_Y = np.eye(n_targets) * 10 + np.random.rand(n_targets, n_targets)
cov_Y = (cov_Y + cov_Y.T) / 2.0
mean_Y = np.random.rand(n_targets)
Y = np.random.multivariate_normal(mean_Y, cov_Y, size=n_samples)
# The Forward model
A = np.random.randn(n_features, n_targets)
X = Y.dot(A.T)
X += np.random.randn(n_samples, n_features) # add noise
X += np.random.rand(n_features) # Put an offset
if n_targets == 1:
Y = Y[:, 0]
return X, Y, A
@pytest.mark.filterwarnings("ignore:invalid value encountered in cast.*:RuntimeWarning")
def test_get_coef():
"""Test getting linear coefficients (filters/patterns) from estimators."""
lm_classification = LinearModel()
assert hasattr(lm_classification, "__sklearn_tags__")
print(lm_classification.__sklearn_tags__())
assert is_classifier(lm_classification.model)
assert is_classifier(lm_classification)
assert not is_regressor(lm_classification.model)
assert not is_regressor(lm_classification)
lm_regression = LinearModel(Ridge())
assert is_regressor(lm_regression.model)
assert is_regressor(lm_regression)
assert not is_classifier(lm_regression.model)
assert not is_classifier(lm_regression)
parameters = {"kernel": ["linear"], "C": [1, 10]}
lm_gs_classification = LinearModel(
GridSearchCV(svm.SVC(), parameters, cv=2, refit=True, n_jobs=None)
)
assert is_classifier(lm_gs_classification)
lm_gs_regression = LinearModel(
GridSearchCV(svm.SVR(), parameters, cv=2, refit=True, n_jobs=None)
)
assert is_regressor(lm_gs_regression)
# Define a classifier, an invertible transformer and an non-invertible one.
assert BaseEstimator is sklearn_BaseEstimator
assert TransformerMixin is sklearn_TransformerMixin
class Clf(BaseEstimator):
def fit(self, X, y):
return self
class NoInv(TransformerMixin):
def fit(self, X, y):
return self
def transform(self, X):
return X
class Inv(NoInv):
def inverse_transform(self, X):
return X
X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)
# I. Test inverse function
# Check that we retrieve the right number of inverse functions even if
# there are nested pipelines
good_estimators = [
(1, make_pipeline(Inv(), Clf())),
(2, make_pipeline(Inv(), Inv(), Clf())),
(3, make_pipeline(Inv(), make_pipeline(Inv(), Inv()), Clf())),
]
for expected_n, est in good_estimators:
est.fit(X, y)
assert expected_n == len(_get_inverse_funcs(est))
bad_estimators = [
Clf(), # 0: no preprocessing
Inv(), # 1: final estimator isn't classifier
make_pipeline(NoInv(), Clf()), # 2: first step isn't invertible
make_pipeline(
Inv(), make_pipeline(Inv(), NoInv()), Clf()
), # 3: nested step isn't invertible
]
# It's the NoInv that triggers the warning, but too hard to context manage just
# the correct part of the bad_estimators loop
for ei, est in enumerate(bad_estimators):
est.fit(X, y)
if ei in (2, 3): # the NoInv indices
ctx = pytest.warns(RuntimeWarning, match="Cannot inverse transform")
else:
ctx = nullcontext()
with ctx:
invs = _get_inverse_funcs(est)
assert_equal(invs, list())
# II. Test get coef for classification/regression estimators and pipelines
rng = np.random.RandomState(0)
for clf in (
lm_regression,
lm_gs_classification,
make_pipeline(StandardScaler(), lm_classification),
make_pipeline(StandardScaler(), lm_gs_regression),
):
# generate some categorical/continuous data
# according to the type of estimator.
if is_classifier(clf):
n, n_features = 1000, 3
X = rng.rand(n, n_features)
y = np.arange(n) % 2
else:
X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)
y = np.ravel(y)
clf.fit(X, y)
# Retrieve final linear model
filters = get_coef(clf, "filters_", False)
if hasattr(clf, "steps"):
if hasattr(clf.steps[-1][-1].model, "best_estimator_"):
# Linear Model with GridSearchCV
coefs = clf.steps[-1][-1].model.best_estimator_.coef_
else:
# Standard Linear Model
coefs = clf.steps[-1][-1].model.coef_
else:
if hasattr(clf.model, "best_estimator_"):
# Linear Model with GridSearchCV
coefs = clf.model.best_estimator_.coef_
else:
# Standard Linear Model
coefs = clf.model.coef_
if coefs.ndim == 2 and coefs.shape[0] == 1:
coefs = coefs[0]
assert_array_equal(filters, coefs)
patterns = get_coef(clf, "patterns_", False)
assert filters[0] != patterns[0]
n_chans = X.shape[1]
assert_array_equal(filters.shape, patterns.shape, [n_chans, n_chans])
# Inverse transform linear model
filters_inv = get_coef(clf, "filters_", True)
assert filters[0] != filters_inv[0]
patterns_inv = get_coef(clf, "patterns_", True)
assert patterns[0] != patterns_inv[0]
class _Noop(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X):
return X.copy()
inverse_transform = transform
@pytest.mark.parametrize("inverse", (True, False))
@pytest.mark.parametrize(
"Scale, kwargs",
[
(Scaler, dict(info=None, scalings="mean")),
(_Noop, dict()),
],
)
def test_get_coef_inverse_transform(inverse, Scale, kwargs):
"""Test get_coef with and without inverse_transform."""
lm_regression = LinearModel(Ridge())
X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)
# Check with search_light and combination of preprocessing ending with sl:
# slider = SlidingEstimator(make_pipeline(StandardScaler(), lm_regression))
# XXX : line above should work but does not as only last step is
# used in get_coef ...
slider = SlidingEstimator(make_pipeline(lm_regression))
X = np.transpose([X, -X], [1, 2, 0]) # invert X across 2 time samples
clf = make_pipeline(Scale(**kwargs), slider)
clf.fit(X, y)
patterns = get_coef(clf, "patterns_", inverse)
filters = get_coef(clf, "filters_", inverse)
assert_array_equal(filters.shape, patterns.shape, X.shape[1:])
# the two time samples get inverted patterns
assert_equal(patterns[0, 0], -patterns[0, 1])
for t in [0, 1]:
filters_t = get_coef(
clf.named_steps["slidingestimator"].estimators_[t], "filters_", False
)
if Scale is _Noop:
assert_array_equal(filters_t, filters[:, t])
@pytest.mark.parametrize("n_features", [1, 5])
@pytest.mark.parametrize("n_targets", [1, 3])
def test_get_coef_multiclass(n_features, n_targets):
"""Test get_coef on multiclass problems."""
# Check patterns with more than 1 regressor
X, Y, A = _make_data(n_samples=30000, n_features=n_features, n_targets=n_targets)
lm = LinearModel(LinearRegression())
assert not hasattr(lm, "model_")
lm.fit(X, Y)
# TODO: modifying non-underscored `model` is a sklearn no-no, maybe should be a
# metaestimator?
assert lm.model is lm.model_
assert_array_equal(lm.filters_.shape, lm.patterns_.shape)
if n_targets == 1:
want_shape = (n_features,)
else:
want_shape = (n_targets, n_features)
assert_array_equal(lm.filters_.shape, want_shape)
if n_features > 1 and n_targets > 1:
assert_array_almost_equal(A, lm.patterns_.T, decimal=2)
lm = LinearModel(Ridge(alpha=0))
clf = make_pipeline(lm)
clf.fit(X, Y)
if n_features > 1 and n_targets > 1:
assert_allclose(A, lm.patterns_.T, atol=2e-2)
coef = get_coef(clf, "patterns_", inverse_transform=True)
assert_allclose(lm.patterns_, coef, atol=1e-5)
# With epochs, scaler, and vectorizer (typical use case)
X_epo = X.reshape(X.shape + (1,))
info = create_info(n_features, 1000.0, "eeg")
lm = LinearModel(Ridge(alpha=1))
clf = make_pipeline(
Scaler(info, scalings=dict(eeg=1.0)), # XXX adding this step breaks
Vectorizer(),
lm,
)
clf.fit(X_epo, Y)
if n_features > 1 and n_targets > 1:
assert_allclose(A, lm.patterns_.T, atol=2e-2)
coef = get_coef(clf, "patterns_", inverse_transform=True)
lm_patterns_ = lm.patterns_[..., np.newaxis]
assert_allclose(lm_patterns_, coef, atol=1e-5)
# Check can pass fitting parameters
lm.fit(X, Y, sample_weight=np.ones(len(Y)))
@pytest.mark.parametrize(
"n_classes, n_channels, n_times",
[
(4, 10, 2),
(4, 3, 2),
(3, 2, 1),
(3, 1, 2),
],
)
# TODO: Need to fix this properly in LinearModel
@pytest.mark.filterwarnings("ignore:'multi_class' was depr.*:FutureWarning")
@pytest.mark.filterwarnings("ignore:lbfgs failed to converge.*:")
def test_get_coef_multiclass_full(n_classes, n_channels, n_times):
"""Test a full example with pattern extraction."""
data = np.zeros((10 * n_classes, n_channels, n_times))
# Make only the first channel informative
for ii in range(n_classes):
data[ii * 10 : (ii + 1) * 10, 0] = ii
events = np.zeros((len(data), 3), int)
events[:, 0] = np.arange(len(events))
events[:, 2] = data[:, 0, 0]
info = create_info(n_channels, 1000.0, "eeg")
epochs = EpochsArray(data, info, events, tmin=0)
clf = make_pipeline(
Scaler(epochs.info),
Vectorizer(),
LinearModel(LogisticRegression(random_state=0, multi_class="ovr")),
)
scorer = "roc_auc_ovr_weighted"
time_gen = GeneralizingEstimator(clf, scorer, verbose=True)
X = epochs.get_data(copy=False)
y = epochs.events[:, 2]
n_splits = 3
cv = StratifiedKFold(n_splits=n_splits)
scores = cross_val_multiscore(time_gen, X, y, cv=cv, verbose=True)
want = (n_splits,)
if n_times > 1:
want += (n_times, n_times)
assert scores.shape == want
# On Windows LBFGS can fail to converge, so we need to be a bit more tol here
limit = 0.7 if platform.system() == "Windows" else 0.8
assert_array_less(limit, scores)
clf.fit(X, y)
patterns = get_coef(clf, "patterns_", inverse_transform=True)
assert patterns.shape == (n_classes, n_channels, n_times)
assert_allclose(patterns[:, 1:], 0.0, atol=1e-7) # no other channels useful
def test_linearmodel():
"""Test LinearModel class for computing filters and patterns."""
# check categorical target fit in standard linear model
rng = np.random.RandomState(0)
clf = LinearModel()
n, n_features = 20, 3
X = rng.rand(n, n_features)
y = np.arange(n) % 2
clf.fit(X, y)
assert_equal(clf.filters_.shape, (n_features,))
assert_equal(clf.patterns_.shape, (n_features,))
with pytest.raises(ValueError):
wrong_X = rng.rand(n, n_features, 99)
clf.fit(wrong_X, y)
# check categorical target fit in standard linear model with GridSearchCV
parameters = {"kernel": ["linear"], "C": [1, 10]}
clf = LinearModel(
GridSearchCV(svm.SVC(), parameters, cv=2, refit=True, n_jobs=None)
)
clf.fit(X, y)
assert_equal(clf.filters_.shape, (n_features,))
assert_equal(clf.patterns_.shape, (n_features,))
with pytest.raises(ValueError):
wrong_X = rng.rand(n, n_features, 99)
clf.fit(wrong_X, y)
# check continuous target fit in standard linear model with GridSearchCV
n_targets = 1
Y = rng.rand(n, n_targets)
clf = LinearModel(
GridSearchCV(svm.SVR(), parameters, cv=2, refit=True, n_jobs=None)
)
clf.fit(X, y)
assert_equal(clf.filters_.shape, (n_features,))
assert_equal(clf.patterns_.shape, (n_features,))
with pytest.raises(ValueError):
wrong_y = rng.rand(n, n_features, 99)
clf.fit(X, wrong_y)
# check multi-target fit in standard linear model
n_targets = 5
Y = rng.rand(n, n_targets)
clf = LinearModel(LinearRegression())
clf.fit(X, Y)
assert_equal(clf.filters_.shape, (n_targets, n_features))
assert_equal(clf.patterns_.shape, (n_targets, n_features))
with pytest.raises(ValueError):
wrong_y = rng.rand(n, n_features, 99)
clf.fit(X, wrong_y)
def test_cross_val_multiscore():
"""Test cross_val_multiscore for computing scores on decoding over time."""
logreg = LogisticRegression(solver="liblinear", random_state=0)
# compare to cross-val-score
X = np.random.rand(20, 3)
y = np.arange(20) % 2
cv = KFold(2, random_state=0, shuffle=True)
clf = logreg
assert_array_equal(
cross_val_score(clf, X, y, cv=cv), cross_val_multiscore(clf, X, y, cv=cv)
)
# Test with search light
X = np.random.rand(20, 4, 3)
y = np.arange(20) % 2
clf = SlidingEstimator(logreg, scoring="accuracy")
scores_acc = cross_val_multiscore(clf, X, y, cv=cv)
assert_array_equal(np.shape(scores_acc), [2, 3])
# check values
scores_acc_manual = list()
for train, test in cv.split(X, y):
clf.fit(X[train], y[train])
scores_acc_manual.append(clf.score(X[test], y[test]))
assert_array_equal(scores_acc, scores_acc_manual)
# check scoring metric
# raise an error if scoring is defined at cross-val-score level and
# search light, because search light does not return a 1-dimensional
# prediction.
with pytest.raises(ValueError, match="multi_class must be"):
cross_val_multiscore(clf, X, y, cv=cv, scoring="roc_auc", n_jobs=1)
clf = SlidingEstimator(logreg, scoring="roc_auc")
scores_auc = cross_val_multiscore(clf, X, y, cv=cv, n_jobs=None)
scores_auc_manual = list()
for train, test in cv.split(X, y):
clf.fit(X[train], y[train])
scores_auc_manual.append(clf.score(X[test], y[test]))
assert_array_equal(scores_auc, scores_auc_manual)
# indirectly test that cross_val_multiscore rightly detects the type of
# estimator and generates a StratifiedKFold for classiers and a KFold
# otherwise
X = np.random.randn(1000, 3)
y = np.ones(1000, dtype=int)
y[::2] = 0
clf = logreg
reg = LinearRegression()
for cross_val in (cross_val_score, cross_val_multiscore):
manual = cross_val(clf, X, y, cv=StratifiedKFold(2))
auto = cross_val(clf, X, y, cv=2)
assert_array_equal(manual, auto)
manual = cross_val(reg, X, y, cv=KFold(2))
auto = cross_val(reg, X, y, cv=2)
assert_array_equal(manual, auto)
@parametrize_with_checks([LinearModel(LogisticRegression())])
def test_sklearn_compliance(estimator, check):
"""Test LinearModel compliance with sklearn."""
ignores = (
"check_estimators_overwrite_params", # self.model changes!
"check_dont_overwrite_parameters",
"check_parameters_default_constructible",
)
if any(ignore in str(check) for ignore in ignores):
return
check(estimator)