[074d3d]: / mne / channels / tests / test_interpolation.py

Download this file

524 lines (451 with data), 20.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from itertools import compress
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from mne import Epochs, pick_channels, pick_types, read_events
from mne._fiff.constants import FIFF
from mne._fiff.proj import _has_eeg_average_ref_proj
from mne.channels import make_dig_montage, make_standard_montage
from mne.channels.interpolation import _make_interpolation_matrix
from mne.datasets import testing
from mne.io import RawArray, read_raw_ctf, read_raw_fif, read_raw_nirx
from mne.preprocessing.nirs import (
beer_lambert_law,
optical_density,
scalp_coupling_index,
)
from mne.utils import _record_warnings
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
raw_fname_ctf = base_dir / "test_ctf_raw.fif"
testing_path = testing.data_path(download=False)
event_id, tmin, tmax = 1, -0.2, 0.5
event_id_2 = 2
def _load_data(kind):
"""Load data."""
# It is more memory efficient to load data in a separate
# function so it's loaded on-demand
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
# subselect channels for speed
if kind == "eeg":
picks = pick_types(raw.info, meg=False, eeg=True, exclude=[])[:15]
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
preload=True,
reject=dict(eeg=80e-6),
)
else:
picks = pick_types(raw.info, meg=True, eeg=False, exclude=[])[1:200:2]
assert kind == "meg"
with pytest.warns(RuntimeWarning, match="projection"):
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
preload=True,
reject=dict(grad=1000e-12, mag=4e-12),
)
return raw, epochs
@pytest.mark.parametrize("offset", (0.0, 0.1))
@pytest.mark.parametrize(
"avg_proj, ctol",
[
(True, (0.86, 0.93)),
(False, (0.97, 0.99)),
],
)
@pytest.mark.parametrize(
"method, atol",
[
pytest.param(None, 3e-6, marks=pytest.mark.slowtest), # slow on Azure
(dict(eeg="MNE"), 4e-6),
],
)
@pytest.mark.filterwarnings("ignore:.*than 20 mm from head frame origin.*")
def test_interpolation_eeg(offset, avg_proj, ctol, atol, method):
"""Test interpolation of EEG channels."""
raw, epochs_eeg = _load_data("eeg")
epochs_eeg = epochs_eeg.copy()
assert not _has_eeg_average_ref_proj(epochs_eeg.info)
# Offsetting the coordinate frame should have no effect on the output
for inst in (raw, epochs_eeg):
for ch in inst.info["chs"]:
if ch["kind"] == FIFF.FIFFV_EEG_CH:
ch["loc"][:3] += offset
ch["loc"][3:6] += offset
for d in inst.info["dig"]:
d["r"] += offset
# check that interpolation does nothing if no bads are marked
epochs_eeg.info["bads"] = []
evoked_eeg = epochs_eeg.average()
kw = dict(method=method)
with pytest.warns(RuntimeWarning, match="Doing nothing"):
evoked_eeg.interpolate_bads(**kw)
# create good and bad channels for EEG
epochs_eeg.info["bads"] = []
goods_idx = np.ones(len(epochs_eeg.ch_names), dtype=bool)
goods_idx[epochs_eeg.ch_names.index("EEG 012")] = False
bads_idx = ~goods_idx
pos = epochs_eeg._get_channel_positions()
evoked_eeg = epochs_eeg.average()
if avg_proj:
evoked_eeg.set_eeg_reference(projection=True).apply_proj()
assert_allclose(evoked_eeg.data.mean(0), 0.0, atol=1e-20)
ave_before = evoked_eeg.data[bads_idx]
# interpolate bad channels for EEG
epochs_eeg.info["bads"] = ["EEG 012"]
evoked_eeg = epochs_eeg.average()
if avg_proj:
evoked_eeg.set_eeg_reference(projection=True).apply_proj()
good_picks = pick_types(evoked_eeg.info, meg=False, eeg=True)
assert_allclose(evoked_eeg.data[good_picks].mean(0), 0.0, atol=1e-20)
evoked_eeg_bad = evoked_eeg.copy()
bads_picks = pick_channels(
epochs_eeg.ch_names, include=epochs_eeg.info["bads"], ordered=True
)
evoked_eeg_bad.data[bads_picks, :] = 1e10
# Test first the exclude parameter
evoked_eeg_2_bads = evoked_eeg_bad.copy()
evoked_eeg_2_bads.info["bads"] = ["EEG 004", "EEG 012"]
evoked_eeg_2_bads.data[
pick_channels(evoked_eeg_bad.ch_names, ["EEG 004", "EEG 012"])
] = 1e10
evoked_eeg_interp = evoked_eeg_2_bads.interpolate_bads(
origin=(0.0, 0.0, 0.0), exclude=["EEG 004"], **kw
)
assert evoked_eeg_interp.info["bads"] == ["EEG 004"]
assert np.all(evoked_eeg_interp.get_data("EEG 004") == 1e10)
assert np.all(evoked_eeg_interp.get_data("EEG 012") != 1e10)
# Now test without exclude parameter
evoked_eeg_bad.info["bads"] = ["EEG 012"]
evoked_eeg_interp = evoked_eeg_bad.copy().interpolate_bads(
origin=(0.0, 0.0, 0.0), **kw
)
if avg_proj:
assert_allclose(evoked_eeg_interp.data.mean(0), 0.0, atol=1e-6)
interp_zero = evoked_eeg_interp.data[bads_idx]
if method is None: # using
pos_good = pos[goods_idx]
pos_bad = pos[bads_idx]
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
assert interpolation.shape == (1, len(epochs_eeg.ch_names) - 1)
interp_manual = np.dot(interpolation, evoked_eeg_bad.data[goods_idx])
assert_array_equal(interp_manual, interp_zero)
del interp_manual, interpolation, pos, pos_good, pos_bad
assert_allclose(ave_before, interp_zero, atol=atol)
assert ctol[0] < np.corrcoef(ave_before, interp_zero)[0, 1] < ctol[1]
interp_fit = evoked_eeg_bad.copy().interpolate_bads(**kw).data[bads_idx]
assert_allclose(ave_before, interp_fit, atol=2.5e-6)
assert ctol[1] < np.corrcoef(ave_before, interp_fit)[0, 1] # better
# check that interpolation fails when preload is False
epochs_eeg.preload = False
with pytest.raises(RuntimeError, match="requires epochs data to be load"):
epochs_eeg.interpolate_bads(**kw)
epochs_eeg.preload = True
# check that interpolation changes the data in raw
raw_eeg = RawArray(data=epochs_eeg._data[0], info=epochs_eeg.info)
raw_before = raw_eeg._data[bads_idx]
raw_after = raw_eeg.interpolate_bads(**kw)._data[bads_idx]
assert not np.all(raw_before == raw_after)
# check that interpolation fails when preload is False
for inst in [raw, epochs_eeg]:
assert hasattr(inst, "preload")
inst.preload = False
inst.info["bads"] = [inst.ch_names[1]]
with pytest.raises(RuntimeError, match="requires.*data to be loaded"):
inst.interpolate_bads(**kw)
# check that interpolation works with few channels
raw_few = raw.copy().crop(0, 0.1).load_data()
raw_few.pick(raw_few.ch_names[:1] + raw_few.ch_names[3:4])
assert len(raw_few.ch_names) == 2
raw_few.del_proj()
raw_few.info["bads"] = [raw_few.ch_names[-1]]
orig_data = raw_few[1][0]
with _record_warnings() as w:
raw_few.interpolate_bads(reset_bads=False, **kw)
assert len([ww for ww in w if "more than" not in str(ww.message)]) == 0
new_data = raw_few[1][0]
assert (new_data == 0).mean() < 0.5
assert np.corrcoef(new_data, orig_data)[0, 1] > 0.2
@pytest.mark.slowtest
def test_interpolation_meg():
"""Test interpolation of MEG channels."""
# speed accuracy tradeoff: channel subselection is faster but the
# correlation drops
thresh = 0.68
raw, epochs_meg = _load_data("meg")
# check that interpolation works when non M/EEG channels are present
# before MEG channels
raw.crop(0, 0.1).load_data().pick(epochs_meg.ch_names)
raw.info.normalize_proj()
raw.set_channel_types({raw.ch_names[0]: "stim"}, on_unit_change="ignore")
raw.info["bads"] = [raw.ch_names[1]]
raw.load_data()
raw.interpolate_bads(mode="fast")
del raw
# check that interpolation works for MEG
epochs_meg.info["bads"] = ["MEG 0141"]
evoked = epochs_meg.average()
pick = pick_channels(epochs_meg.info["ch_names"], epochs_meg.info["bads"])
# MEG -- raw
raw_meg = RawArray(data=epochs_meg._data[0], info=epochs_meg.info)
raw_meg.info["bads"] = ["MEG 0141"]
data1 = raw_meg[pick, :][0][0]
raw_meg.info.normalize_proj()
data2 = raw_meg.interpolate_bads(reset_bads=False, mode="fast")[pick, :][0][0]
assert np.corrcoef(data1, data2)[0, 1] > thresh
# the same number of bads as before
assert len(raw_meg.info["bads"]) == len(raw_meg.info["bads"])
# MEG -- epochs
data1 = epochs_meg.get_data(pick).ravel()
epochs_meg.info.normalize_proj()
epochs_meg.interpolate_bads(mode="fast")
data2 = epochs_meg.get_data(pick).ravel()
assert np.corrcoef(data1, data2)[0, 1] > thresh
assert len(epochs_meg.info["bads"]) == 0
# MEG -- evoked (plus auto origin)
data1 = evoked.data[pick]
evoked.info.normalize_proj()
data2 = evoked.interpolate_bads(origin="auto").data[pick]
assert np.corrcoef(data1, data2)[0, 1] > thresh
# MEG -- with exclude
evoked.info["bads"] = ["MEG 0141", "MEG 0121"]
pick = pick_channels(evoked.ch_names, evoked.info["bads"], ordered=True)
evoked.data[pick[-1]] = 1e10
data1 = evoked.data[pick]
evoked.info.normalize_proj()
data2 = evoked.interpolate_bads(origin="auto", exclude=["MEG 0121"]).data[pick]
assert np.corrcoef(data1[0], data2[0])[0, 1] > thresh
assert np.all(data2[1] == 1e10)
def _this_interpol(inst, ref_meg=False):
from mne.channels.interpolation import _interpolate_bads_meg
_interpolate_bads_meg(inst, ref_meg=ref_meg, mode="fast")
return inst
@pytest.mark.slowtest
def test_interpolate_meg_ctf():
"""Test interpolation of MEG channels from CTF system."""
thresh = 0.85
tol = 0.05 # assert the new interpol correlates at least .05 "better"
bad = "MLC22-2622" # select a good channel to test the interpolation
raw = read_raw_fif(raw_fname_ctf).crop(0, 1.0).load_data() # 3 secs
raw.apply_gradient_compensation(3)
# Show that we have to exclude ref_meg for interpolating CTF MEG-channels
# (fixed in #5965):
raw.info["bads"] = [bad]
pick_bad = pick_channels(raw.info["ch_names"], raw.info["bads"])
data_orig = raw[pick_bad, :][0]
# mimic old behavior (the ref_meg-arg in _interpolate_bads_meg only serves
# this purpose):
data_interp_refmeg = _this_interpol(raw, ref_meg=True)[pick_bad, :][0]
# new:
data_interp_no_refmeg = _this_interpol(raw, ref_meg=False)[pick_bad, :][0]
R = dict()
R["no_refmeg"] = np.corrcoef(data_orig, data_interp_no_refmeg)[0, 1]
R["with_refmeg"] = np.corrcoef(data_orig, data_interp_refmeg)[0, 1]
print("Corrcoef of interpolated with original channel: ", R)
assert R["no_refmeg"] > R["with_refmeg"] + tol
assert R["no_refmeg"] > thresh
@testing.requires_testing_data
def test_interpolation_ctf_comp():
"""Test interpolation with compensated CTF data."""
raw_fname = testing_path / "CTF" / "somMDYO-18av.ds"
raw = read_raw_ctf(raw_fname, preload=True)
raw.info["bads"] = [raw.ch_names[5], raw.ch_names[-5]]
raw.interpolate_bads(mode="fast", origin=(0.0, 0.0, 0.04))
assert raw.info["bads"] == []
@testing.requires_testing_data
def test_interpolation_nirs():
"""Test interpolating bad nirs channels."""
pytest.importorskip("pymatreader")
fname = testing_path / "NIRx" / "nirscout" / "nirx_15_2_recording_w_overlap"
raw_intensity = read_raw_nirx(fname, preload=False)
raw_od = optical_density(raw_intensity)
sci = scalp_coupling_index(raw_od)
raw_od.info["bads"] = list(compress(raw_od.ch_names, sci < 0.5))
bad_0 = np.where([name == raw_od.info["bads"][0] for name in raw_od.ch_names])[0][0]
bad_0_std_pre_interp = np.std(raw_od._data[bad_0])
bads_init = list(raw_od.info["bads"])
raw_od.interpolate_bads(exclude=bads_init[:2])
assert raw_od.info["bads"] == bads_init[:2]
raw_od.interpolate_bads()
assert raw_od.info["bads"] == []
assert bad_0_std_pre_interp > np.std(raw_od._data[bad_0])
raw_haemo = beer_lambert_law(raw_od, ppf=6)
raw_haemo.info["bads"] = raw_haemo.ch_names[2:4]
assert raw_haemo.info["bads"] == ["S1_D2 hbo", "S1_D2 hbr"]
raw_haemo.interpolate_bads()
assert raw_haemo.info["bads"] == []
@testing.requires_testing_data
def test_interpolation_ecog():
"""Test interpolation for ECoG."""
raw, epochs_eeg = _load_data("eeg")
bads = ["EEG 012"]
bads_mask = np.isin(epochs_eeg.ch_names, bads)
epochs_ecog = epochs_eeg.set_channel_types(
{ch: "ecog" for ch in epochs_eeg.ch_names}
)
epochs_ecog.info["bads"] = bads
# check that interpolation changes the data in raw
raw_ecog = RawArray(data=epochs_ecog._data[0], info=epochs_ecog.info)
raw_before = raw_ecog.copy()
raw_after = raw_ecog.interpolate_bads(method=dict(ecog="spline"))
assert not np.all(raw_before._data[bads_mask] == raw_after._data[bads_mask])
assert_array_equal(raw_before._data[~bads_mask], raw_after._data[~bads_mask])
@testing.requires_testing_data
def test_interpolation_seeg():
"""Test interpolation for sEEG."""
raw, epochs_eeg = _load_data("eeg")
bads = ["EEG 012"]
bads_mask = np.isin(epochs_eeg.ch_names, bads)
epochs_seeg = epochs_eeg.set_channel_types(
{ch: "seeg" for ch in epochs_eeg.ch_names}
)
epochs_seeg.info["bads"] = bads
# check that interpolation changes the data in raw
raw_seeg = RawArray(data=epochs_seeg._data[0], info=epochs_seeg.info)
raw_before = raw_seeg.copy()
montage = raw_seeg.get_montage()
pos = montage.get_positions()
ch_pos = pos.pop("ch_pos")
n0 = ch_pos[epochs_seeg.ch_names[0]]
n1 = ch_pos[epochs_seeg.ch_names[1]]
for i, ch in enumerate(epochs_seeg.ch_names[2:]):
ch_pos[ch] = n0 + (n1 - n0) * (i + 2)
raw_seeg.set_montage(make_dig_montage(ch_pos, **pos))
raw_after = raw_seeg.interpolate_bads(method=dict(seeg="spline"))
assert not np.all(raw_before._data[bads_mask] == raw_after._data[bads_mask])
assert_array_equal(raw_before._data[~bads_mask], raw_after._data[~bads_mask])
# check interpolation on epochs
epochs_seeg.set_montage(make_dig_montage(ch_pos, **pos))
epochs_before = epochs_seeg.copy()
epochs_after = epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
assert not np.all(
epochs_before._data[:, bads_mask] == epochs_after._data[:, bads_mask]
)
assert_array_equal(
epochs_before._data[:, ~bads_mask], epochs_after._data[:, ~bads_mask]
)
# test shaft all bad
epochs_seeg.info["bads"] = epochs_seeg.ch_names
with pytest.raises(RuntimeError, match="Not enough good channels"):
epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
# test bad not on shaft
ch_pos[bads[0]] = np.array([10, 10, 10])
epochs_seeg.info["bads"] = bads
epochs_seeg.set_montage(make_dig_montage(ch_pos, **pos))
with pytest.raises(RuntimeError, match="No shaft found"):
epochs_seeg.interpolate_bads(method=dict(seeg="spline"))
def test_nan_interpolation(raw):
"""Test 'nan' method for interpolating bads."""
ch_to_interp = [raw.ch_names[1]] # don't use channel 0 (type is IAS not MEG)
raw.info["bads"] = ch_to_interp
# test that warning appears for reset_bads = True
with pytest.warns(RuntimeWarning, match="Consider setting reset_bads=False"):
raw.interpolate_bads(method="nan", reset_bads=True)
# despite warning, interpolation still happened, make sure the channel is NaN
bad_chs = raw.get_data(ch_to_interp)
assert np.isnan(bad_chs).all()
# make sure reset_bads=False works as expected
raw.info["bads"] = ch_to_interp
raw.interpolate_bads(method="nan", reset_bads=False)
assert raw.info["bads"] == ch_to_interp
# make sure other channels are untouched
raw.drop_channels(ch_to_interp)
good_chs = raw.get_data()
assert np.isfinite(good_chs).all()
@testing.requires_testing_data
def test_method_str():
"""Test method argument types."""
raw = read_raw_fif(
testing_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif",
preload=False,
)
raw.crop(0, 1).pick(("meg", "eeg"), exclude=()).load_data()
raw.copy().interpolate_bads(method="MNE")
with pytest.raises(ValueError, match="Invalid value for the"):
raw.interpolate_bads(method="spline")
raw.pick("eeg", exclude=())
raw.interpolate_bads(method="spline")
@pytest.mark.parametrize("montage_name", ["biosemi16", "standard_1020"])
@pytest.mark.parametrize("method", ["spline", "MNE"])
@pytest.mark.parametrize("data_type", ["raw", "epochs", "evoked"])
def test_interpolate_to_eeg(montage_name, method, data_type):
"""Test the interpolate_to method for EEG for raw, epochs, and evoked."""
# Load EEG data
raw, epochs_eeg = _load_data("eeg")
epochs_eeg = epochs_eeg.copy()
# Load data for raw
raw.load_data()
# Create a target montage
montage = make_standard_montage(montage_name)
# Prepare data to interpolate to
if data_type == "raw":
inst = raw.copy()
elif data_type == "epochs":
inst = epochs_eeg.copy()
elif data_type == "evoked":
inst = epochs_eeg.average()
shape = list(inst._data.shape)
orig_total = len(inst.info["ch_names"])
n_eeg_orig = len(pick_types(inst.info, eeg=True))
# Assert first and last channels are not EEG
if data_type == "raw":
ch_types = inst.get_channel_types()
assert ch_types[0] != "eeg"
assert ch_types[-1] != "eeg"
# Record the names and data of the first and last channels.
if data_type == "raw":
first_name = inst.info["ch_names"][0]
last_name = inst.info["ch_names"][-1]
data_first = inst._data[..., 0, :].copy()
data_last = inst._data[..., -1, :].copy()
# Interpolate the EEG channels.
inst_interp = inst.copy().interpolate_to(montage, method=method)
# Check that the new channel names include the montage channels.
assert set(montage.ch_names).issubset(set(inst_interp.info["ch_names"]))
# Check that the overall channel order is changed.
assert inst.info["ch_names"] != inst_interp.info["ch_names"]
# Check that the data shape is as expected.
new_nchan_expected = orig_total - n_eeg_orig + len(montage.ch_names)
expected_shape = (new_nchan_expected, shape[-1])
if len(shape) == 3:
expected_shape = (shape[0],) + expected_shape
assert inst_interp._data.shape == expected_shape
# Verify that the first and last channels retain their positions.
if data_type == "raw":
assert inst_interp.info["ch_names"][0] == first_name
assert inst_interp.info["ch_names"][-1] == last_name
# Verify that the data for the first and last channels is unchanged.
if data_type == "raw":
np.testing.assert_allclose(
inst_interp._data[..., 0, :],
data_first,
err_msg="Data for the first non-EEG channel has changed.",
)
np.testing.assert_allclose(
inst_interp._data[..., -1, :],
data_last,
err_msg="Data for the last non-EEG channel has changed.",
)
# Validate that bad channels are carried over.
# Mark the first non eeg channel as bad
all_ch = inst_interp.info["ch_names"]
eeg_ch = [all_ch[i] for i in pick_types(inst_interp.info, eeg=True)]
bads = [ch for ch in all_ch if ch not in eeg_ch][:1]
inst.info["bads"] = bads
inst_interp = inst.copy().interpolate_to(montage, method=method)
assert inst_interp.info["bads"] == bads