[074d3d]: / mne / annotations.py

Download this file

1737 lines (1504 with data), 64.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import json
import re
import warnings
from collections import Counter, OrderedDict
from collections.abc import Iterable
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from itertools import takewhile
from textwrap import shorten
import numpy as np
from scipy.io import loadmat
from ._fiff.constants import FIFF
from ._fiff.open import fiff_open
from ._fiff.tag import read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
_safe_name_list,
end_block,
start_and_end_file,
start_block,
write_double,
write_float,
write_name_list_sanitized,
write_string,
)
from .utils import (
_check_dict_keys,
_check_dt,
_check_fname,
_check_option,
_check_pandas_installed,
_check_time_format,
_convert_times,
_DefaultEventParser,
_dt_to_stamp,
_is_numeric,
_mask_to_onsets_offsets,
_on_missing,
_pl,
_stamp_to_dt,
_validate_type,
check_fname,
fill_doc,
int_like,
logger,
verbose,
warn,
)
# For testing windows_like_datetime, we monkeypatch "datetime" in this module.
# Keep the true datetime object around for _validate_type use.
_datetime = datetime
def _check_o_d_s_c(onset, duration, description, ch_names):
onset = np.atleast_1d(np.array(onset, dtype=float))
if onset.ndim != 1:
raise ValueError(
f"Onset must be a one dimensional array, got {onset.ndim} (shape "
f"{onset.shape})."
)
duration = np.array(duration, dtype=float)
if duration.ndim == 0 or duration.shape == (1,):
duration = np.repeat(duration, len(onset))
if duration.ndim != 1:
raise ValueError(
f"Duration must be a one dimensional array, got {duration.ndim}."
)
description = np.array(description, dtype=str)
if description.ndim == 0 or description.shape == (1,):
description = np.repeat(description, len(onset))
if description.ndim != 1:
raise ValueError(
f"Description must be a one dimensional array, got {description.ndim}."
)
_safe_name_list(description, "write", "description")
# ch_names: convert to ndarray of tuples
_validate_type(ch_names, (None, tuple, list, np.ndarray), "ch_names")
if ch_names is None:
ch_names = [()] * len(onset)
ch_names = list(ch_names)
for ai, ch in enumerate(ch_names):
_validate_type(ch, (list, tuple, np.ndarray), f"ch_names[{ai}]")
ch_names[ai] = tuple(ch)
for ci, name in enumerate(ch_names[ai]):
_validate_type(name, str, f"ch_names[{ai}][{ci}]")
ch_names = _ndarray_ch_names(ch_names)
if not (len(onset) == len(duration) == len(description) == len(ch_names)):
raise ValueError(
"Onset, duration, description, and ch_names must be "
f"equal in sizes, got {len(onset)}, {len(duration)}, "
f"{len(description)}, and {len(ch_names)}."
)
return onset, duration, description, ch_names
def _ndarray_ch_names(ch_names):
# np.array(..., dtype=object) if all entries are empty will give
# an empty array of shape (n_entries, 0) which is not helpful. So let's
# force it to give us an array of shape (n_entries,) full of empty
# tuples
out = np.empty(len(ch_names), dtype=object)
out[:] = ch_names
return out
@fill_doc
class Annotations:
"""Annotation object for annotating segments of raw data.
.. note::
To convert events to `~mne.Annotations`, use
`~mne.annotations_from_events`. To convert existing `~mne.Annotations`
to events, use `~mne.events_from_annotations`.
Parameters
----------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,) | float
Durations of the annotations in seconds. If a float, all the
annotations are given the same duration.
description : array of str, shape (n_annotations,) | str
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
orig_time : float | str | datetime | tuple of int | None
A POSIX Timestamp, datetime or a tuple containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time. If it is a string, it should conform to the ISO8601 format.
More precisely to this '%%Y-%%m-%%d %%H:%%M:%%S.%%f' particular case of
the ISO8601 format where the delimiter between date and time is ' '.
%(ch_names_annot)s
.. versionadded:: 0.23
See Also
--------
mne.annotations_from_events
mne.events_from_annotations
Notes
-----
Annotations are added to instance of :class:`mne.io.Raw` as the attribute
:attr:`raw.annotations <mne.io.Raw.annotations>`.
To reject bad epochs using annotations, use
annotation description starting with 'bad' keyword. The epochs with
overlapping bad segments are then rejected automatically by default.
To remove epochs with blinks you can do:
>>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP
>>> n_blinks = len(eog_events) # doctest: +SKIP
>>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP
>>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP
>>> description = ['bad blink'] * n_blinks # doctest: +SKIP
>>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP
>>> raw.set_annotations(annotations) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP
**ch_names**
Specifying channel names allows the creation of channel-specific
annotations. Once the annotations are assigned to a raw instance with
:meth:`mne.io.Raw.set_annotations`, if channels are renamed by the raw
instance, the annotation channels also get renamed. If channels are dropped
from the raw instance, any channel-specific annotation that has no channels
left in the raw instance will also be removed.
**orig_time**
If ``orig_time`` is None, the annotations are synced to the start of the
data (0 seconds). Otherwise the annotations are synced to sample 0 and
``raw.first_samp`` is taken into account the same way as with events.
When setting annotations, the following alignments
between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place:
::
----------- meas_date=XX, orig_time=YY -----------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
meas_date first_samp
.
. | +------+
. |_________| ANOT |
. | | |
. | +------+
. orig_time onset[0]
.
| +------+
|___________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=XX, orig_time=None ---------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
| +------+
|________________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=None, orig_time=YY ---------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
| +------+
|_________| ANOT |
| | |
| +------+
[[[ CRASH ]]]
----------- meas_date=None, orig_time=None -------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
N +------+
o________________________| |
n | |
e +------+
orig_time onset[0]'
.. warning::
This means that when ``raw.info['meas_date'] is None``, doing
``raw.set_annotations(raw.annotations)`` will not alter ``raw`` if and
only if ``raw.first_samp == 0``. When it's non-zero,
``raw.set_annotations`` will assume that the "new" annotations refer to
the original data (with ``first_samp==0``), and will be re-referenced to
the new time offset!
**Specific annotation**
``BAD_ACQ_SKIP`` annotation leads to specific reading/writing file
behaviours. See :meth:`mne.io.read_raw_fif` and
:meth:`Raw.save() <mne.io.Raw.save>` notes for details.
""" # noqa: E501
def __init__(self, onset, duration, description, orig_time=None, ch_names=None):
self._orig_time = _handle_meas_date(orig_time)
self.onset, self.duration, self.description, self.ch_names = _check_o_d_s_c(
onset, duration, description, ch_names
)
self._sort() # ensure we're sorted
@property
def orig_time(self):
"""The time base of the Annotations."""
return self._orig_time
def __eq__(self, other):
"""Compare to another Annotations instance."""
if not isinstance(other, Annotations):
return False
return (
np.array_equal(self.onset, other.onset)
and np.array_equal(self.duration, other.duration)
and np.array_equal(self.description, other.description)
and np.array_equal(self.ch_names, other.ch_names)
and self.orig_time == other.orig_time
)
def __repr__(self):
"""Show the representation."""
counter = Counter(self.description)
kinds = ", ".join(["{} ({})".format(*k) for k in sorted(counter.items())])
kinds = (": " if len(kinds) > 0 else "") + kinds
ch_specific = ", channel-specific" if self._any_ch_names() else ""
s = (
f"Annotations | {len(self.onset)} segment"
f"{_pl(len(self.onset))}{ch_specific}{kinds}"
)
return "<" + shorten(s, width=77, placeholder=" ...") + ">"
def __len__(self):
"""Return the number of annotations.
Returns
-------
n_annot : int
The number of annotations.
"""
return len(self.duration)
def __add__(self, other):
"""Add (concatencate) two Annotation objects."""
out = self.copy()
out += other
return out
def __iadd__(self, other):
"""Add (concatencate) two Annotation objects in-place.
Both annotations must have the same orig_time
"""
if len(self) == 0:
self._orig_time = other.orig_time
if self.orig_time != other.orig_time:
raise ValueError(
"orig_time should be the same to add/concatenate 2 annotations (got "
f"{self.orig_time} != {other.orig_time})"
)
return self.append(
other.onset, other.duration, other.description, other.ch_names
)
def __iter__(self):
"""Iterate over the annotations."""
# Figure this out once ahead of time for consistency and speed (for
# thousands of annotations)
with_ch_names = self._any_ch_names()
for idx in range(len(self.onset)):
yield self.__getitem__(idx, with_ch_names=with_ch_names)
def __getitem__(self, key, *, with_ch_names=None):
"""Propagate indexing and slicing to the underlying numpy structure."""
if isinstance(key, int_like):
out_keys = ("onset", "duration", "description", "orig_time")
out_vals = (
self.onset[key],
self.duration[key],
self.description[key],
self.orig_time,
)
if with_ch_names or (with_ch_names is None and self._any_ch_names()):
out_keys += ("ch_names",)
out_vals += (self.ch_names[key],)
return OrderedDict(zip(out_keys, out_vals))
else:
key = list(key) if isinstance(key, tuple) else key
return Annotations(
onset=self.onset[key],
duration=self.duration[key],
description=self.description[key],
orig_time=self.orig_time,
ch_names=self.ch_names[key],
)
@fill_doc
def append(self, onset, duration, description, ch_names=None):
"""Add an annotated segment. Operates inplace.
Parameters
----------
onset : float | array-like
Annotation time onset from the beginning of the recording in
seconds.
duration : float | array-like
Duration of the annotation in seconds.
description : str | array-like
Description for the annotation. To reject epochs, use description
starting with keyword 'bad'.
%(ch_names_annot)s
.. versionadded:: 0.23
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
The array-like support for arguments allows this to be used similarly
to not only ``list.append``, but also
`list.extend <https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types>`__.
""" # noqa: E501
onset, duration, description, ch_names = _check_o_d_s_c(
onset, duration, description, ch_names
)
self.onset = np.append(self.onset, onset)
self.duration = np.append(self.duration, duration)
self.description = np.append(self.description, description)
self.ch_names = np.append(self.ch_names, ch_names)
self._sort()
return self
def copy(self):
"""Return a copy of the Annotations.
Returns
-------
inst : instance of Annotations
A copy of the object.
"""
return deepcopy(self)
def delete(self, idx):
"""Remove an annotation. Operates inplace.
Parameters
----------
idx : int | array-like of int
Index of the annotation to remove. Can be array-like to
remove multiple indices.
"""
self.onset = np.delete(self.onset, idx)
self.duration = np.delete(self.duration, idx)
self.description = np.delete(self.description, idx)
self.ch_names = np.delete(self.ch_names, idx)
@fill_doc
def to_data_frame(self, time_format="datetime"):
"""Export annotations in tabular structure as a pandas DataFrame.
Parameters
----------
%(time_format_df_raw)s
.. versionadded:: 1.7
Returns
-------
result : pandas.DataFrame
Returns a pandas DataFrame with onset, duration, and
description columns. A column named ch_names is added if any
annotations are channel-specific.
"""
pd = _check_pandas_installed(strict=True)
valid_time_formats = ["ms", "timedelta", "datetime"]
dt = _handle_meas_date(self.orig_time)
if dt is None:
dt = _handle_meas_date(0)
time_format = _check_time_format(time_format, valid_time_formats, dt)
dt = dt.replace(tzinfo=None)
times = _convert_times(self.onset, time_format, dt)
df = dict(onset=times, duration=self.duration, description=self.description)
if self._any_ch_names():
df.update(ch_names=self.ch_names)
df = pd.DataFrame(df)
return df
def count(self):
"""Count annotations.
Returns
-------
counts : dict
A dictionary containing unique annotation descriptions as keys with their
counts as values.
"""
return count_annotations(self)
def _any_ch_names(self):
return any(len(ch) for ch in self.ch_names)
def _prune_ch_names(self, info, on_missing):
# this prunes channel names and if a given channel-specific annotation
# no longer has any channels left, it gets dropped
keep = set(info["ch_names"])
ch_names = self.ch_names
warned = False
drop_idx = list()
for ci, ch in enumerate(ch_names):
if len(ch):
names = list()
for name in ch:
if name not in keep:
if not warned:
_on_missing(
on_missing,
"At least one channel name in "
f"annotations missing from info: {name}",
)
warned = True
else:
names.append(name)
ch_names[ci] = tuple(names)
if not len(ch_names[ci]):
drop_idx.append(ci)
if len(drop_idx):
self.delete(drop_idx)
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save annotations to FIF, CSV or TXT.
Typically annotations get saved in the FIF file for raw data
(e.g., as ``raw.annotations``), but this offers the possibility
to also save them to disk separately in different file formats
which are easier to share between packages.
Parameters
----------
fname : path-like
The filename to use.
%(overwrite)s
.. versionadded:: 0.23
%(verbose)s
Notes
-----
The format of the information stored in the saved annotation objects
depends on the chosen file format. :file:`.csv` files store the onset
as timestamps (e.g., ``2002-12-03 19:01:56.676071``),
whereas :file:`.txt` files store onset as seconds since start of the
recording (e.g., ``45.95597082905339``).
"""
check_fname(
fname,
"annotations",
(
"-annot.fif",
"-annot.fif.gz",
"_annot.fif",
"_annot.fif.gz",
".txt",
".csv",
),
)
fname = _check_fname(fname, overwrite=overwrite)
if fname.suffix == ".txt":
_write_annotations_txt(fname, self)
elif fname.suffix == ".csv":
_write_annotations_csv(fname, self)
else:
with start_and_end_file(fname) as fid:
_write_annotations(fid, self)
def _sort(self):
"""Sort in place."""
# instead of argsort here we use sorted so that it gives us
# the onset-then-duration hierarchy
vals = sorted(zip(self.onset, self.duration, range(len(self))))
order = list(list(zip(*vals))[-1]) if len(vals) else []
self.onset = self.onset[order]
self.duration = self.duration[order]
self.description = self.description[order]
self.ch_names = self.ch_names[order]
@verbose
def crop(
self, tmin=None, tmax=None, emit_warning=False, use_orig_time=True, verbose=None
):
"""Remove all annotation that are outside of [tmin, tmax].
The method operates inplace.
Parameters
----------
tmin : float | datetime | None
Start time of selection in seconds.
tmax : float | datetime | None
End time of selection in seconds.
emit_warning : bool
Whether to emit warnings when limiting or omitting annotations.
Defaults to False.
use_orig_time : bool
Whether to use orig_time as an offset.
Defaults to True.
%(verbose)s
Returns
-------
self : instance of Annotations
The cropped Annotations object.
"""
if len(self) == 0:
return self # no annotations, nothing to do
if not use_orig_time or self.orig_time is None:
offset = _handle_meas_date(0)
else:
offset = self.orig_time
if tmin is None:
tmin = timedelta(seconds=self.onset.min()) + offset
if tmax is None:
tmax = timedelta(seconds=(self.onset + self.duration).max()) + offset
for key, val in [("tmin", tmin), ("tmax", tmax)]:
_validate_type(
val, ("numeric", _datetime), key, "numeric, datetime, or None"
)
absolute_tmin = _handle_meas_date(tmin)
absolute_tmax = _handle_meas_date(tmax)
del tmin, tmax
if absolute_tmin > absolute_tmax:
raise ValueError(
f"tmax should be greater than or equal to tmin ({absolute_tmin} < "
f"{absolute_tmax})."
)
logger.debug(f"Cropping annotations {absolute_tmin} - {absolute_tmax}")
onsets, durations, descriptions, ch_names = [], [], [], []
out_of_bounds, clip_left_elem, clip_right_elem = [], [], []
for idx, (onset, duration, description, ch) in enumerate(
zip(self.onset, self.duration, self.description, self.ch_names)
):
# if duration is NaN behave like a zero
if np.isnan(duration):
duration = 0.0
# convert to absolute times
absolute_onset = timedelta(seconds=onset) + offset
absolute_offset = absolute_onset + timedelta(seconds=duration)
out_of_bounds.append(
absolute_onset > absolute_tmax or absolute_offset < absolute_tmin
)
if out_of_bounds[-1]:
clip_left_elem.append(False)
clip_right_elem.append(False)
logger.debug(
f" [{idx}] Dropping "
f"({absolute_onset} - {absolute_offset}: {description})"
)
else:
# clip the left side
clip_left_elem.append(absolute_onset < absolute_tmin)
if clip_left_elem[-1]:
absolute_onset = absolute_tmin
clip_right_elem.append(absolute_offset > absolute_tmax)
if clip_right_elem[-1]:
absolute_offset = absolute_tmax
if clip_left_elem[-1] or clip_right_elem[-1]:
durations.append((absolute_offset - absolute_onset).total_seconds())
else:
durations.append(duration)
onsets.append((absolute_onset - offset).total_seconds())
logger.debug(
f" [{idx}] Keeping "
f"({absolute_onset} - {absolute_offset} -> "
f"{onset} - {onset + duration})"
)
descriptions.append(description)
ch_names.append(ch)
logger.debug(f"Cropping complete (kept {len(onsets)})")
self.onset = np.array(onsets, float)
self.duration = np.array(durations, float)
assert (self.duration >= 0).all()
self.description = np.array(descriptions, dtype=str)
self.ch_names = _ndarray_ch_names(ch_names)
if emit_warning:
omitted = np.array(out_of_bounds).sum()
if omitted > 0:
warn(f"Omitted {omitted} annotation(s) that were outside data range.")
limited = (np.array(clip_left_elem) | np.array(clip_right_elem)).sum()
if limited > 0:
warn(
f"Limited {limited} annotation(s) that were expanding outside the"
" data range."
)
return self
@verbose
def set_durations(self, mapping, verbose=None):
"""Set annotation duration(s). Operates inplace.
Parameters
----------
mapping : dict | float
A dictionary mapping the annotation description to a duration in
seconds e.g. ``{'ShortStimulus' : 3, 'LongStimulus' : 12}``.
Alternatively, if a number is provided, then all annotations
durations are set to the single provided value.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, (int, float, dict))
if isinstance(mapping, dict):
_check_dict_keys(
mapping,
self.description,
valid_key_source="data",
key_description="Annotation description(s)",
)
for stim in mapping:
map_idx = [desc == stim for desc in self.description]
self.duration[map_idx] = mapping[stim]
elif _is_numeric(mapping):
self.duration = np.ones(self.description.shape) * mapping
else:
raise ValueError(
"Setting durations requires the mapping of "
"descriptions to times to be provided as a dict. "
f"Instead {type(mapping)} was provided."
)
return self
@verbose
def rename(self, mapping, verbose=None):
"""Rename annotation description(s). Operates inplace.
Parameters
----------
mapping : dict
A dictionary mapping the old description to a new description,
e.g. {'1.0' : 'Control', '2.0' : 'Stimulus'}.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, dict)
_check_dict_keys(
mapping,
self.description,
valid_key_source="data",
key_description="Annotation description(s)",
)
self.description = np.array([str(mapping.get(d, d)) for d in self.description])
return self
class EpochAnnotationsMixin:
"""Mixin class for Annotations in Epochs."""
@property
def annotations(self): # noqa: D102
return self._annotations
@verbose
def set_annotations(self, annotations, on_missing="raise", *, verbose=None):
"""Setter for Epoch annotations from Raw.
This method does not handle offsetting the times based
on first_samp or measurement dates, since that is expected
to occur in Raw.set_annotations().
Parameters
----------
annotations : instance of mne.Annotations | None
Annotations to set.
%(on_missing_ch_names)s
%(verbose)s
Returns
-------
self : instance of Epochs
The epochs object with annotations.
Notes
-----
Annotation onsets and offsets are stored as time in seconds (not as
sample numbers).
If you have an ``-epo.fif`` file saved to disk created before 1.0,
annotations can be added correctly only if no decimation or
resampling was performed. We thus suggest to regenerate your
:class:`mne.Epochs` from raw and re-save to disk with 1.0+ if you
want to safely work with :class:`~mne.Annotations` in epochs.
Since this method does not handle offsetting the times based
on first_samp or measurement dates, the recommended way to add
Annotations is::
raw.set_annotations(annotations)
annotations = raw.annotations
epochs.set_annotations(annotations)
.. versionadded:: 1.0
"""
_validate_type(annotations, (Annotations, None), "annotations")
if annotations is None:
self._annotations = None
else:
if getattr(self, "_unsafe_annot_add", False):
warn(
"Adding annotations to Epochs created (and saved to disk) before "
"1.0 will yield incorrect results if decimation or resampling was "
"performed on the instance, we recommend regenerating the Epochs "
"and re-saving them to disk."
)
new_annotations = annotations.copy()
new_annotations._prune_ch_names(self.info, on_missing)
self._annotations = new_annotations
return self
def get_annotations_per_epoch(self):
"""Get a list of annotations that occur during each epoch.
Returns
-------
epoch_annots : list
A list of lists (with length equal to number of epochs) where each
inner list contains any annotations that overlap the corresponding
epoch. Annotations are stored as a :class:`tuple` of onset,
duration, description (not as a :class:`~mne.Annotations` object),
where the onset is now relative to time=0 of the epoch, rather than
time=0 of the original continuous (raw) data.
"""
# create a list of annotations for each epoch
epoch_annot_list = [[] for _ in range(len(self.events))]
# check if annotations exist
if self.annotations is None:
return epoch_annot_list
# when each epoch and annotation starts/stops
# no need to account for first_samp here...
epoch_tzeros = self.events[:, 0] / self._raw_sfreq
epoch_starts, epoch_stops = (
np.atleast_2d(epoch_tzeros) + np.atleast_2d(self.times[[0, -1]]).T
)
# ... because first_samp isn't accounted for here either
annot_starts = self._annotations.onset
annot_stops = annot_starts + self._annotations.duration
# the first two cases (annot_straddles_epoch_{start|end}) will both
# (redundantly) capture cases where an annotation fully encompasses
# an epoch (e.g., annot from 1-4s, epoch from 2-3s). The redundancy
# doesn't matter because results are summed and then cast to bool (all
# we care about is presence/absence of overlap).
annot_straddles_epoch_start = np.logical_and(
np.atleast_2d(epoch_starts) >= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_starts) < np.atleast_2d(annot_stops).T,
)
annot_straddles_epoch_end = np.logical_and(
np.atleast_2d(epoch_stops) > np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) <= np.atleast_2d(annot_stops).T,
)
# this captures the only remaining case we care about: annotations
# fully contained within an epoch (or exactly coextensive with it).
annot_fully_within_epoch = np.logical_and(
np.atleast_2d(epoch_starts) <= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) >= np.atleast_2d(annot_stops).T,
)
# combine all cases to get array of shape (n_annotations, n_epochs).
# Nonzero entries indicate overlap between the corresponding
# annotation (row index) and epoch (column index).
all_cases = (
annot_straddles_epoch_start
+ annot_straddles_epoch_end
+ annot_fully_within_epoch
)
# for each Epoch-Annotation overlap occurrence:
for annot_ix, epo_ix in zip(*np.nonzero(all_cases)):
this_annot = self._annotations[annot_ix]
this_tzero = epoch_tzeros[epo_ix]
# adjust annotation onset to be relative to epoch tzero...
annot = (
this_annot["onset"] - this_tzero,
this_annot["duration"],
this_annot["description"],
)
# ...then add it to the correct sublist of `epoch_annot_list`
epoch_annot_list[epo_ix].append(annot)
return epoch_annot_list
def add_annotations_to_metadata(self, overwrite=False):
"""Add raw annotations into the Epochs metadata data frame.
Adds three columns to the ``metadata`` consisting of a list
in each row:
- ``annot_onset``: the onset of each Annotation within
the Epoch relative to the start time of the Epoch (in seconds).
- ``annot_duration``: the duration of each Annotation
within the Epoch in seconds.
- ``annot_description``: the free-form text description of each
Annotation.
Parameters
----------
overwrite : bool
Whether to overwrite existing columns in metadata or not.
Default is False.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
Notes
-----
.. versionadded:: 1.0
"""
pd = _check_pandas_installed()
# check if annotations exist
if self.annotations is None:
warn(
f"There were no Annotations stored in {self}, so "
"metadata was not modified."
)
return self
# get existing metadata DataFrame or instantiate an empty one
if self._metadata is not None:
metadata = self._metadata
else:
data = np.empty((len(self.events), 0))
metadata = pd.DataFrame(data=data)
if (
any(
name in metadata.columns
for name in ["annot_onset", "annot_duration", "annot_description"]
)
and not overwrite
):
raise RuntimeError(
"Metadata for Epochs already contains columns "
'"annot_onset", "annot_duration", or "annot_description".'
)
# get the Epoch annotations, then convert to separate lists for
# onsets, durations, and descriptions
epoch_annot_list = self.get_annotations_per_epoch()
onset, duration, description = [], [], []
for epoch_annot in epoch_annot_list:
for ix, annot_prop in enumerate((onset, duration, description)):
entry = [annot[ix] for annot in epoch_annot]
# round onset and duration to avoid IO round trip mismatch
if ix < 2:
entry = np.round(entry, decimals=12).tolist()
annot_prop.append(entry)
# Create a new Annotations column that is instantiated as an empty
# list per Epoch.
metadata["annot_onset"] = pd.Series(onset)
metadata["annot_duration"] = pd.Series(duration)
metadata["annot_description"] = pd.Series(description)
# reset the metadata
self.metadata = metadata
return self
def _combine_annotations(
one, two, one_n_samples, one_first_samp, two_first_samp, sfreq
):
"""Combine a tuple of annotations."""
assert one is not None
assert two is not None
shift = one_n_samples / sfreq # to the right by the number of samples
shift += one_first_samp / sfreq # to the right by the offset
shift -= two_first_samp / sfreq # undo its offset
onset = np.concatenate([one.onset, two.onset + shift])
duration = np.concatenate([one.duration, two.duration])
description = np.concatenate([one.description, two.description])
ch_names = np.concatenate([one.ch_names, two.ch_names])
return Annotations(onset, duration, description, one.orig_time, ch_names)
def _handle_meas_date(meas_date):
"""Convert meas_date to datetime or None.
If `meas_date` is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Note that ISO8601 allows for ' ' or 'T' as delimiters between date and
time.
"""
if isinstance(meas_date, str):
ACCEPTED_ISO8601 = "%Y-%m-%d %H:%M:%S.%f"
try:
meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601)
except ValueError:
meas_date = None
else:
meas_date = meas_date.replace(tzinfo=timezone.utc)
elif isinstance(meas_date, tuple):
# old way
meas_date = _stamp_to_dt(meas_date)
if meas_date is not None:
if np.isscalar(meas_date):
# It would be nice just to do:
#
# meas_date = datetime.fromtimestamp(meas_date, timezone.utc)
#
# But Windows does not like timestamps < 0. So we'll use
# our specialized wrapper instead:
meas_date = np.array(np.modf(meas_date)[::-1])
meas_date *= [1, 1e6]
meas_date = _stamp_to_dt(np.round(meas_date))
_check_dt(meas_date) # run checks
return meas_date
def _sync_onset(raw, onset, inverse=False):
"""Adjust onsets in relation to raw data."""
offset = (-1 if inverse else 1) * raw._first_time
assert raw.info["meas_date"] == raw.annotations.orig_time
annot_start = onset - offset
return annot_start
def _annotations_starts_stops(raw, kinds, name="skip_by_annotation", invert=False):
"""Get starts and stops from given kinds.
onsets and ends are inclusive.
"""
_validate_type(kinds, (str, list, tuple), name)
if isinstance(kinds, str):
kinds = [kinds]
else:
for kind in kinds:
_validate_type(kind, "str", "All entries")
if len(raw.annotations) == 0:
onsets, ends = np.array([], int), np.array([], int)
else:
idxs = [
idx
for idx, desc in enumerate(raw.annotations.description)
if any(desc.upper().startswith(kind.upper()) for kind in kinds)
]
# onsets are already sorted
onsets = raw.annotations.onset[idxs]
onsets = _sync_onset(raw, onsets)
ends = onsets + raw.annotations.duration[idxs]
onsets = raw.time_as_index(onsets, use_rounding=True)
ends = raw.time_as_index(ends, use_rounding=True)
assert (onsets <= ends).all() # all durations >= 0
if invert:
# We need to eliminate overlaps here, otherwise wacky things happen,
# so we carefully invert the relationship
mask = np.zeros(len(raw.times), bool)
for onset, end in zip(onsets, ends):
mask[onset:end] = True
mask = ~mask
extras = onsets == ends
extra_onsets, extra_ends = onsets[extras], ends[extras]
onsets, ends = _mask_to_onsets_offsets(mask)
# Keep ones where things were exactly equal
del extras
# we could do this with a np.insert+np.searchsorted, but our
# ordered-ness should get us it for free
onsets = np.sort(np.concatenate([onsets, extra_onsets]))
ends = np.sort(np.concatenate([ends, extra_ends]))
assert (onsets <= ends).all()
return onsets, ends
def _write_annotations(fid, annotations):
"""Write annotations."""
start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset)
write_float(
fid, FIFF.FIFF_MNE_BASELINE_MAX, annotations.duration + annotations.onset
)
write_name_list_sanitized(
fid, FIFF.FIFF_COMMENT, annotations.description, name="description"
)
if annotations.orig_time is not None:
write_double(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(annotations.orig_time))
if annotations._any_ch_names():
write_string(
fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG, json.dumps(tuple(annotations.ch_names))
)
end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
def _write_annotations_csv(fname, annot):
annot = annot.to_data_frame()
if "ch_names" in annot:
annot["ch_names"] = [
_safe_name_list(ch, "write", name=f'annot["ch_names"][{ci}')
for ci, ch in enumerate(annot["ch_names"])
]
annot.to_csv(fname, index=False)
def _write_annotations_txt(fname, annot):
content = "# MNE-Annotations\n"
if annot.orig_time is not None:
# for backward compat, we do not write tzinfo (assumed UTC)
content += f"# orig_time : {annot.orig_time.replace(tzinfo=None)}\n"
content += "# onset, duration, description"
data = [annot.onset, annot.duration, annot.description]
if annot._any_ch_names():
content += ", ch_names"
data.append(
[
_safe_name_list(ch, "write", f"annot.ch_names[{ci}]")
for ci, ch in enumerate(annot.ch_names)
]
)
content += "\n"
data = np.array(data, dtype=str).T
assert data.ndim == 2
assert data.shape[0] == len(annot.onset)
assert data.shape[1] in (3, 4)
with open(fname, "wb") as fid:
fid.write(content.encode())
np.savetxt(fid, data, delimiter=",", fmt="%s")
@fill_doc
def read_annotations(
fname, sfreq="auto", uint16_codec=None, encoding="utf8", ignore_marker_types=False
) -> Annotations:
r"""Read annotations from a file.
This function reads a ``.fif``, ``.fif.gz``, ``.vmrk``, ``.amrk``,
``.edf``, ``.bdf``, ``.gdf``, ``.txt``, ``.csv``, ``.cnt``, ``.cef``, or
``.set`` file and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : path-like
The filename.
sfreq : float | ``'auto'``
The sampling frequency in the file. This parameter is necessary for
\*.vmrk, \*.amrk, and \*.cef files as Annotations are expressed in
seconds and \*.vmrk/\*.amrk/\*.cef files are in samples. For any other
file format, ``sfreq`` is omitted. If set to 'auto' then the ``sfreq``
is taken from the respective info file of the same name with according
file extension (\*.vhdr/\*.ahdr for brainvision; \*.dap for Curry 7;
\*.cdt.dpa for Curry 8). So data.vmrk/amrk looks for sfreq in
data.vhdr/ahdr, data.cef looks in data.dap and data.cdt.cef looks in
data.cdt.dpa.
uint16_codec : str | None
This parameter is only used in EEGLAB (\*.set) and omitted otherwise.
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
``'latin1'`` or ``'utf-8'``) should be used when reading character
arrays and can therefore help you solve this problem.
%(encoding_edf)s
Only used when reading EDF annotations.
ignore_marker_types : bool
If ``True``, ignore marker types in BrainVision files (and only use their
descriptions). Defaults to ``False``.
Returns
-------
annot : instance of Annotations
The annotations.
Notes
-----
The annotations stored in a ``.csv`` require the onset columns to be
timestamps. If you have onsets as floats (in seconds), you should use the
``.txt`` extension.
"""
from .io.brainvision.brainvision import _read_annotations_brainvision
from .io.cnt.cnt import _read_annotations_cnt
from .io.ctf.markers import _read_annotations_ctf
from .io.curry.curry import _read_annotations_curry
from .io.edf.edf import _read_annotations_edf
from .io.eeglab.eeglab import _read_annotations_eeglab
fname = _check_fname(
fname,
overwrite="read",
must_exist=True,
need_dir=str(fname).endswith(".ds"), # for CTF
name="fname",
)
readers = {
".csv": _read_annotations_csv,
".cnt": _read_annotations_cnt,
".ds": _read_annotations_ctf,
".cef": _read_annotations_curry,
".set": _read_annotations_eeglab,
".edf": _read_annotations_edf,
".bdf": _read_annotations_edf,
".gdf": _read_annotations_edf,
".vmrk": _read_annotations_brainvision,
".amrk": _read_annotations_brainvision,
".txt": _read_annotations_txt,
}
kwargs = {
".vmrk": {"sfreq": sfreq, "ignore_marker_types": ignore_marker_types},
".amrk": {"sfreq": sfreq, "ignore_marker_types": ignore_marker_types},
".cef": {"sfreq": sfreq},
".set": {"uint16_codec": uint16_codec},
".edf": {"encoding": encoding},
".bdf": {"encoding": encoding},
".gdf": {"encoding": encoding},
}
if fname.suffix in readers:
annotations = readers[fname.suffix](fname, **kwargs.get(fname.suffix, {}))
elif fname.name.endswith(("fif", "fif.gz")):
# Read FiF files
ff, tree, _ = fiff_open(fname, preload=False)
with ff as fid:
annotations = _read_annotations_fif(fid, tree)
elif fname.name.startswith("events_") and fname.suffix == ".mat":
annotations = _read_brainstorm_annotations(fname)
else:
raise OSError(f'Unknown annotation file format "{fname}"')
if annotations is None:
raise OSError(f'No annotation data found in file "{fname}"')
return annotations
def _read_annotations_csv(fname):
"""Read annotations from csv.
Parameters
----------
fname : path-like
The filename.
Returns
-------
annot : instance of Annotations
The annotations.
"""
pd = _check_pandas_installed(strict=True)
df = pd.read_csv(fname, keep_default_na=False)
orig_time = df["onset"].values[0]
try:
float(orig_time)
warn(
"It looks like you have provided annotation onsets as floats. "
"These will be interpreted as MILLISECONDS. If that is not what "
"you want, save your CSV as a TXT file; the TXT reader accepts "
"onsets in seconds."
)
except ValueError:
pass
onset_dt = pd.to_datetime(df["onset"])
onset = (onset_dt - onset_dt[0]).dt.total_seconds()
duration = df["duration"].values.astype(float)
description = df["description"].values
ch_names = None
if "ch_names" in df.columns:
ch_names = [
_safe_name_list(val, "read", "annotation channel name")
for val in df["ch_names"].values
]
return Annotations(onset, duration, description, orig_time, ch_names)
def _read_brainstorm_annotations(fname, orig_time=None):
"""Read annotations from a Brainstorm events_ file.
Parameters
----------
fname : path-like
The filename
orig_time : float | int | instance of datetime | array of int | None
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
def get_duration_from_times(t):
return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0]))
annot_data = loadmat(fname)
onsets, durations, descriptions = (list(), list(), list())
for label, _, _, _, times, _, _ in annot_data["events"][0]:
onsets.append(times[0])
durations.append(get_duration_from_times(times))
n_annot = len(times[0])
descriptions += [str(label[0])] * n_annot
return Annotations(
onset=np.concatenate(onsets),
duration=np.concatenate(durations),
description=descriptions,
orig_time=orig_time,
)
def _is_iso8601(candidate_str):
ISO8601 = r"^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$"
return re.compile(ISO8601).match(candidate_str) is not None
def _read_annotations_txt_parse_header(fname):
def is_orig_time(x):
return x.startswith("# orig_time :")
with open(fname) as fid:
header = list(takewhile(lambda x: x.startswith("#"), fid))
orig_values = [h[13:].strip() for h in header if is_orig_time(h)]
orig_values = [_handle_meas_date(orig) for orig in orig_values if _is_iso8601(orig)]
return None if not orig_values else orig_values[0]
def _read_annotations_txt(fname):
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
out = np.loadtxt(fname, delimiter=",", dtype=np.bytes_, unpack=True)
ch_names = None
if len(out) == 0:
onset, duration, desc = [], [], []
else:
_check_option("text header", len(out), (3, 4))
if len(out) == 3:
onset, duration, desc = out
else:
onset, duration, desc, ch_names = out
onset = [float(o.decode()) for o in np.atleast_1d(onset)]
duration = [float(d.decode()) for d in np.atleast_1d(duration)]
desc = [str(d.decode()).strip() for d in np.atleast_1d(desc)]
if ch_names is not None:
ch_names = [
_safe_name_list(ch.decode().strip(), "read", f"ch_names[{ci}]")
for ci, ch in enumerate(ch_names)
]
orig_time = _read_annotations_txt_parse_header(fname)
annotations = Annotations(
onset=onset,
duration=duration,
description=desc,
orig_time=orig_time,
ch_names=ch_names,
)
return annotations
def _read_annotations_fif(fid, tree):
"""Read annotations."""
annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS)
if len(annot_data) == 0:
annotations = None
else:
annot_data = annot_data[0]
orig_time = ch_names = None
onset, duration, description = list(), list(), list()
for ent in annot_data["directory"]:
kind = ent.kind
pos = ent.pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_BASELINE_MIN:
onset = tag.data
onset = list() if onset is None else onset
elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
duration = tag.data
duration = list() if duration is None else duration - onset
elif kind == FIFF.FIFF_COMMENT:
description = _safe_name_list(tag.data, "read", "description")
elif kind == FIFF.FIFF_MEAS_DATE:
orig_time = tag.data
try:
orig_time = float(orig_time) # old way
except TypeError:
orig_time = tuple(orig_time) # new way
elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
ch_names = tuple(tuple(x) for x in json.loads(tag.data))
assert len(onset) == len(duration) == len(description)
annotations = Annotations(onset, duration, description, orig_time, ch_names)
return annotations
def _select_annotations_based_on_description(descriptions, event_id, regexp):
"""Get a collection of descriptions and returns index of selected."""
regexp_comp = re.compile(".*" if regexp is None else regexp)
event_id_ = dict()
dropped = []
# Iterate over the sorted descriptions so that the Counter mapping
# is slightly less arbitrary
for desc in sorted(descriptions):
if desc in event_id_:
continue
if regexp_comp.match(desc) is None:
continue
if isinstance(event_id, dict):
if desc in event_id:
event_id_[desc] = event_id[desc]
else:
continue
else:
trigger = event_id(desc)
if trigger is not None:
event_id_[desc] = trigger
else:
dropped.append(desc)
event_sel = [ii for ii, kk in enumerate(descriptions) if kk in event_id_]
if len(event_sel) == 0 and regexp is not None:
raise ValueError("Could not find any of the events you specified.")
return event_sel, event_id_
def _select_events_based_on_id(events, event_desc):
"""Get a collection of events and returns index of selected."""
event_desc_ = dict()
func = event_desc.get if isinstance(event_desc, dict) else event_desc
event_ids = events[np.unique(events[:, 2], return_index=True)[1], 2]
for e in event_ids:
trigger = func(e)
if trigger is not None:
event_desc_[e] = trigger
event_sel = [ii for ii, e in enumerate(events) if e[2] in event_desc_]
if len(event_sel) == 0:
raise ValueError("Could not find any of the events you specified.")
return event_sel, event_desc_
def _check_event_id(event_id, raw):
from .io import Raw, RawArray
from .io.brainvision.brainvision import (
RawBrainVision,
_BVEventParser,
_check_bv_annot,
)
if event_id is None:
return _DefaultEventParser()
elif event_id == "auto":
if isinstance(raw, RawBrainVision):
return _BVEventParser()
elif isinstance(raw, Raw | RawArray) and _check_bv_annot(
raw.annotations.description
):
logger.info("Non-RawBrainVision raw using branvision markers")
return _BVEventParser()
else:
return _DefaultEventParser()
elif callable(event_id) or isinstance(event_id, dict):
return event_id
else:
raise ValueError(
"Invalid type for event_id (should be None, str, "
f"dict or callable). Got {type(event_id)}."
)
def _check_event_description(event_desc, events):
"""Check event_id and convert to default format."""
if event_desc is None: # convert to int to make typing-checks happy
event_desc = list(np.unique(events[:, 2]))
if isinstance(event_desc, dict):
for val in event_desc.values():
_validate_type(val, (str, None), "Event names")
elif isinstance(event_desc, Iterable):
event_desc = np.asarray(event_desc)
if event_desc.ndim != 1:
raise ValueError(f"event_desc must be 1D, got shape {event_desc.shape}")
event_desc = dict(zip(event_desc, map(str, event_desc)))
elif callable(event_desc):
pass
else:
raise ValueError(
"Invalid type for event_desc (should be None, list, "
f"1darray, dict or callable). Got {type(event_desc)}."
)
return event_desc
@verbose
def events_from_annotations(
raw,
event_id="auto",
regexp=r"^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$",
use_rounding=True,
chunk_duration=None,
tol=1e-8,
verbose=None,
):
"""Get :term:`events` and ``event_id`` from an Annotations object.
Parameters
----------
raw : instance of Raw
The raw data for which Annotations are defined.
event_id : dict | callable | None | ``'auto'``
Can be:
- **dict**: map descriptions (keys) to integer event codes (values).
Only the descriptions present will be mapped, others will be ignored.
- **callable**: must take a string input and return an integer event
code, or return ``None`` to ignore the event.
- **None**: Map descriptions to unique integer values based on their
``sorted`` order.
- **'auto' (default)**: prefer a raw-format-specific parser:
- Brainvision: map stimulus events to their integer part; response
events to integer part + 1000; optic events to integer part + 2000;
'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999;
all others like ``None`` with an offset of 10000.
- Other raw formats: Behaves like None.
.. versionadded:: 0.18
regexp : str | None
Regular expression used to filter the annotations whose
descriptions is a match. The default ignores descriptions beginning
``'bad'`` or ``'edge'`` (case-insensitive).
.. versionchanged:: 0.18
Default ignores bad and edge descriptions.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
chunk_duration : float | None
Chunk duration in seconds. If ``chunk_duration`` is set to None
(default), generated events correspond to the annotation onsets.
If not, :func:`mne.events_from_annotations` returns as many events as
they fit within the annotation duration spaced according to
``chunk_duration``. As a consequence annotations with duration shorter
than ``chunk_duration`` will not contribute events.
tol : float
The tolerance used to check if a chunk fits within an annotation when
``chunk_duration`` is not ``None``. If the duration from a computed
chunk onset to the end of the annotation is smaller than
``chunk_duration`` minus ``tol``, the onset will be discarded.
%(verbose)s
Returns
-------
%(events)s
event_id : dict
The event_id variable that can be passed to :class:`~mne.Epochs`.
See Also
--------
mne.annotations_from_events
Notes
-----
For data formats that store integer events as strings (e.g., NeuroScan
``.cnt`` files), passing the Python built-in function :class:`int` as the
``event_id`` parameter will do what most users probably want in those
circumstances: return an ``event_id`` dictionary that maps event ``'1'`` to
integer event code ``1``, ``'2'`` to ``2``, etc.
"""
if len(raw.annotations) == 0:
event_id = dict() if not isinstance(event_id, dict) else event_id
return np.empty((0, 3), dtype=int), event_id
annotations = raw.annotations
event_id = _check_event_id(event_id, raw)
event_sel, event_id_ = _select_annotations_based_on_description(
annotations.description, event_id=event_id, regexp=regexp
)
if chunk_duration is None:
inds = raw.time_as_index(
annotations.onset, use_rounding=use_rounding, origin=annotations.orig_time
)
if annotations.orig_time is not None:
inds += raw.first_samp
values = [event_id_[kk] for kk in annotations.description[event_sel]]
inds = inds[event_sel]
else:
inds = values = np.array([]).astype(int)
for annot in annotations[event_sel]:
annot_offset = annot["onset"] + annot["duration"]
_onsets = np.arange(annot["onset"], annot_offset, chunk_duration)
good_events = annot_offset - _onsets >= chunk_duration - tol
if good_events.any():
_onsets = _onsets[good_events]
_inds = raw.time_as_index(
_onsets, use_rounding=use_rounding, origin=annotations.orig_time
)
_inds += raw.first_samp
inds = np.append(inds, _inds)
_values = np.full(
shape=len(_inds),
fill_value=event_id_[annot["description"]],
dtype=int,
)
values = np.append(values, _values)
events = np.c_[inds, np.zeros(len(inds)), values].astype(int)
logger.info(f"Used Annotations descriptions: {list(event_id_.keys())}")
return events, event_id_
@verbose
def annotations_from_events(
events, sfreq, event_desc=None, first_samp=0, orig_time=None, verbose=None
):
"""Convert an event array to an Annotations object.
Parameters
----------
events : ndarray, shape (n_events, 3)
The events.
sfreq : float
Sampling frequency.
event_desc : dict | array-like | callable | None
Events description. Can be:
- **dict**: map integer event codes (keys) to descriptions (values).
Only the descriptions present will be mapped, others will be ignored.
- **array-like**: list, or 1d array of integers event codes to include.
Only the event codes present will be mapped, others will be ignored.
Event codes will be passed as string descriptions.
- **callable**: must take a integer event code as input and return a
string description or None to ignore it.
- **None**: Use integer event codes as descriptions.
first_samp : int
The first data sample (default=0). See :attr:`mne.io.Raw.first_samp`
docstring.
orig_time : float | str | datetime | tuple of int | None
Determines the starting time of annotation acquisition. If None
(default), starting time is determined from beginning of raw data
acquisition. For details, see :meth:`mne.Annotations` docstring.
%(verbose)s
Returns
-------
annot : instance of Annotations
The annotations.
See Also
--------
mne.events_from_annotations
Notes
-----
Annotations returned by this function will all have zero (null) duration.
Creating events from annotations via the function
`mne.events_from_annotations` takes in event mappings with
key→value pairs as description→ID, whereas `mne.annotations_from_events`
takes in event mappings with key→value pairs as ID→description.
If you need to use these together, you can invert the mapping by doing::
event_desc = {v: k for k, v in event_id.items()}
"""
event_desc = _check_event_description(event_desc, events)
event_sel, event_desc_ = _select_events_based_on_id(events, event_desc)
events_sel = events[event_sel]
onsets = (events_sel[:, 0] - first_samp) / sfreq
descriptions = [event_desc_[e[2]] for e in events_sel]
durations = np.zeros(len(events_sel)) # dummy durations
# Create annotations
annots = Annotations(
onset=onsets, duration=durations, description=descriptions, orig_time=orig_time
)
return annots
def _adjust_onset_meas_date(annot, raw):
"""Adjust the annotation onsets based on raw meas_date."""
# If there is a non-None meas date, then the onset should take into
# account the first_samp / first_time.
if raw.info["meas_date"] is not None:
annot.onset += raw.first_time
def count_annotations(annotations):
"""Count annotations.
Parameters
----------
annotations : mne.Annotations
The annotations instance.
Returns
-------
counts : dict
A dictionary containing unique annotation descriptions as keys with their
counts as values.
Examples
--------
>>> annotations = mne.Annotations([0, 1, 2], [1, 2, 1], ["T0", "T1", "T0"])
>>> count_annotations(annotations)
{'T0': 2, 'T1': 1}
"""
types, counts = np.unique(annotations.description, return_counts=True)
return {str(t): int(count) for t, count in zip(types, counts)}