[074d3d]: / mne / _fiff / tests / test_reference.py

Download this file

972 lines (868 with data), 37.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import itertools
from contextlib import nullcontext
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
from mne import (
Epochs,
Projection,
add_reference_channels,
create_info,
find_events,
make_forward_solution,
make_sphere_model,
pick_channels,
pick_channels_forward,
pick_types,
read_events,
read_evokeds,
set_bipolar_reference,
set_eeg_reference,
setup_volume_source_space,
)
from mne._fiff.constants import FIFF
from mne._fiff.proj import _has_eeg_average_ref_proj
from mne._fiff.reference import _apply_reference
from mne.datasets import testing
from mne.epochs import BaseEpochs, make_fixed_length_epochs
from mne.io import RawArray, read_raw_fif
from mne.utils import _record_warnings, catch_logging
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
data_dir = testing.data_path(download=False) / "MEG" / "sample"
fif_fname = data_dir / "sample_audvis_trunc_raw.fif"
eve_fname = data_dir / "sample_audvis_trunc_raw-eve.fif"
ave_fname = data_dir / "sample_audvis-ave.fif"
def _test_reference(raw, reref, ref_data, ref_from):
"""Test whether a reference has been correctly applied."""
# Separate EEG channels from other channel types
picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude="bads")
picks_other = pick_types(
raw.info, meg=True, eeg=False, eog=True, stim=True, exclude="bads"
)
# Calculate indices of reference channesl
picks_ref = [raw.ch_names.index(ch) for ch in ref_from]
# Get data
_data = raw._data
_reref = reref._data
# Check that the ref has been properly computed
if ref_data is not None:
assert_array_equal(ref_data, _data[..., picks_ref, :].mean(-2))
# Get the raw EEG data and other channel data
raw_eeg_data = _data[..., picks_eeg, :]
raw_other_data = _data[..., picks_other, :]
# Get the rereferenced EEG data
reref_eeg_data = _reref[..., picks_eeg, :]
reref_other_data = _reref[..., picks_other, :]
# Check that non-EEG channels are untouched
assert_allclose(raw_other_data, reref_other_data, 1e-6, atol=1e-15)
# Undo rereferencing of EEG channels if possible
if ref_data is not None:
if isinstance(raw, BaseEpochs):
unref_eeg_data = reref_eeg_data + ref_data[:, np.newaxis, :]
else:
unref_eeg_data = reref_eeg_data + ref_data
assert_allclose(raw_eeg_data, unref_eeg_data, 1e-6, atol=1e-15)
@testing.requires_testing_data
def test_apply_reference():
"""Test base function for rereferencing."""
raw = read_raw_fif(fif_fname, preload=True)
# Rereference raw data by creating a copy of original data
reref, ref_data = _apply_reference(raw.copy(), ref_from=["EEG 001", "EEG 002"])
assert reref.info["custom_ref_applied"]
_test_reference(raw, reref, ref_data, ["EEG 001", "EEG 002"])
# The CAR reference projection should have been removed by the function
assert not _has_eeg_average_ref_proj(reref.info)
# Test that data is modified in place when copy=False
reref, ref_data = _apply_reference(raw, ["EEG 001", "EEG 002"])
assert raw is reref
# Test that disabling the reference does not change anything
reref, ref_data = _apply_reference(raw.copy(), [])
assert_array_equal(raw._data, reref._data)
# Test re-referencing Epochs object
raw = read_raw_fif(fif_fname, preload=False)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
)
reref, ref_data = _apply_reference(epochs.copy(), ref_from=["EEG 001", "EEG 002"])
assert reref.info["custom_ref_applied"]
_test_reference(epochs, reref, ref_data, ["EEG 001", "EEG 002"])
# Test re-referencing Evoked object
evoked = epochs.average()
reref, ref_data = _apply_reference(evoked.copy(), ref_from=["EEG 001", "EEG 002"])
assert reref.info["custom_ref_applied"]
_test_reference(evoked, reref, ref_data, ["EEG 001", "EEG 002"])
# Referencing needs data to be preloaded
raw_np = read_raw_fif(fif_fname, preload=False)
pytest.raises(RuntimeError, _apply_reference, raw_np, ["EEG 001"])
# Test having inactive SSP projections that deal with channels involved
# during re-referencing
raw = read_raw_fif(fif_fname, preload=True)
raw.add_proj(
Projection(
active=False,
data=dict(
col_names=["EEG 001", "EEG 002"],
row_names=None,
data=np.array([[1, 1]]),
ncol=2,
nrow=1,
),
desc="test",
kind=1,
)
)
# Projection concerns channels mentioned in projector
with pytest.raises(RuntimeError, match="Inactive signal space"):
_apply_reference(raw, ["EEG 001"])
# Projection does not concern channels mentioned in projector, no error
_apply_reference(raw, ["EEG 003"], ["EEG 004"])
# CSD cannot be rereferenced
with raw.info._unlock():
raw.info["custom_ref_applied"] = FIFF.FIFFV_MNE_CUSTOM_REF_CSD
with pytest.raises(RuntimeError, match="Cannot set.* type 'CSD'"):
raw.set_eeg_reference()
@testing.requires_testing_data
def test_set_eeg_reference():
"""Test rereference eeg data."""
raw = read_raw_fif(fif_fname, preload=True)
with raw.info._unlock():
raw.info["projs"] = []
# Test setting an average reference projection
assert not _has_eeg_average_ref_proj(raw.info)
reref, ref_data = set_eeg_reference(raw, projection=True)
assert _has_eeg_average_ref_proj(reref.info)
assert not reref.info["projs"][0]["active"]
assert ref_data is None
reref.apply_proj()
eeg_chans = [raw.ch_names[ch] for ch in pick_types(raw.info, meg=False, eeg=True)]
_test_reference(
raw, reref, ref_data, [ch for ch in eeg_chans if ch not in raw.info["bads"]]
)
# Test setting an average reference when one was already present
with pytest.warns(RuntimeWarning, match="untouched"):
reref, ref_data = set_eeg_reference(raw, copy=False, projection=True)
assert ref_data is None
# Test setting an average reference on non-preloaded data
raw_nopreload = read_raw_fif(fif_fname, preload=False)
with raw_nopreload.info._unlock():
raw_nopreload.info["projs"] = []
reref, ref_data = set_eeg_reference(raw_nopreload, projection=True)
assert _has_eeg_average_ref_proj(reref.info)
assert not reref.info["projs"][0]["active"]
# Rereference raw data by creating a copy of original data
reref, ref_data = set_eeg_reference(raw, ["EEG 001", "EEG 002"], copy=True)
assert reref.info["custom_ref_applied"]
_test_reference(raw, reref, ref_data, ["EEG 001", "EEG 002"])
# Test that data is modified in place when copy=False
reref, ref_data = set_eeg_reference(raw, ["EEG 001", "EEG 002"], copy=False)
assert raw is reref
# Test moving from custom to average reference
reref, ref_data = set_eeg_reference(raw, ["EEG 001", "EEG 002"])
reref, _ = set_eeg_reference(reref, projection=True)
assert _has_eeg_average_ref_proj(reref.info)
assert not reref.info["custom_ref_applied"]
# When creating an average reference fails, make sure the
# custom_ref_applied flag remains untouched.
reref = raw.copy()
with reref.info._unlock():
reref.info["custom_ref_applied"] = FIFF.FIFFV_MNE_CUSTOM_REF_ON
reref.pick(picks="meg") # Cause making average ref fail
# should have turned it off
assert reref.info["custom_ref_applied"] == FIFF.FIFFV_MNE_CUSTOM_REF_OFF
with pytest.raises(ValueError, match="found to rereference"):
set_eeg_reference(reref, projection=True)
# Test moving from average to custom reference
reref, ref_data = set_eeg_reference(raw, projection=True)
reref, _ = set_eeg_reference(reref, ["EEG 001", "EEG 002"])
assert not _has_eeg_average_ref_proj(reref.info)
assert len(reref.info["projs"]) == 0
assert reref.info["custom_ref_applied"] == FIFF.FIFFV_MNE_CUSTOM_REF_ON
# Test that disabling the reference does not change the data
assert _has_eeg_average_ref_proj(raw.info)
reref, _ = set_eeg_reference(raw, [])
assert_array_equal(raw._data, reref._data)
assert not _has_eeg_average_ref_proj(reref.info)
# make sure ref_channels=[] removes average reference projectors
assert _has_eeg_average_ref_proj(raw.info)
reref, _ = set_eeg_reference(raw, [])
assert not _has_eeg_average_ref_proj(reref.info)
# Test that average reference gives identical results when calculated
# via SSP projection (projection=True) or directly (projection=False)
with raw.info._unlock():
raw.info["projs"] = []
reref_1, _ = set_eeg_reference(raw.copy(), projection=True)
reref_1.apply_proj()
reref_2, _ = set_eeg_reference(raw.copy(), projection=False)
assert_allclose(reref_1._data, reref_2._data, rtol=1e-6, atol=1e-15)
# Test average reference without projection
reref, ref_data = set_eeg_reference(
raw.copy(), ref_channels="average", projection=False
)
_test_reference(raw, reref, ref_data, eeg_chans)
with pytest.raises(ValueError, match='supported for ref_channels="averag'):
set_eeg_reference(raw, [], True, True)
with pytest.raises(ValueError, match='supported for ref_channels="averag'):
set_eeg_reference(raw, ["EEG 001"], True, True)
@pytest.mark.parametrize(
"ch_type, msg",
[
("auto", ("ECoG",)),
("ecog", ("ECoG",)),
("dbs", ("DBS",)),
(["ecog", "dbs"], ("ECoG", "DBS")),
],
)
@pytest.mark.parametrize("projection", [False, True])
def test_set_eeg_reference_ch_type(ch_type, msg, projection):
"""Test setting EEG reference for ECoG or DBS."""
# gh-6454
# gh-8739 added DBS
ch_names = ["ECOG01", "ECOG02", "DBS01", "DBS02", "MISC"]
rng = np.random.RandomState(0)
data = rng.randn(5, 1000)
raw = RawArray(
data, create_info(ch_names, 1000.0, ["ecog"] * 2 + ["dbs"] * 2 + ["misc"])
)
if ch_type == "auto":
ref_ch = ch_names[:2]
else:
ref_ch = raw.copy().pick(picks=ch_type).ch_names
with catch_logging() as log:
reref, ref_data = set_eeg_reference(
raw.copy(), ch_type=ch_type, projection=projection, verbose=True
)
if not projection:
assert f"Applying a custom {msg}" in log.getvalue()
assert reref.info["custom_ref_applied"] # gh-7350
_test_reference(raw, reref, ref_data, ref_ch)
match = "no EEG data found" if projection else "No channels supplied"
with pytest.raises(ValueError, match=match):
set_eeg_reference(raw, ch_type="eeg", projection=projection)
# gh-8739
raw2 = RawArray(data, create_info(5, 1000.0, ["mag"] * 4 + ["misc"]))
with pytest.raises(
ValueError, match="No EEG, ECoG, sEEG or DBS channels found to rereference."
):
set_eeg_reference(raw2, ch_type="auto", projection=projection)
@testing.requires_testing_data
def test_set_eeg_reference_rest():
"""Test setting a REST reference."""
raw = read_raw_fif(fif_fname).crop(0, 1).pick(picks="eeg").load_data()
raw.info["bads"] = ["EEG 057"] # should be excluded
same = [raw.ch_names.index(raw.info["bads"][0])]
picks = np.setdiff1d(np.arange(len(raw.ch_names)), same)
trans = None
# Use fixed values from old sphere fit to reduce lines changed with fixed algorithm
sphere = make_sphere_model(
[-0.00413508, 0.01598787, 0.05175598],
0.09100286249131773,
)
src = setup_volume_source_space(pos=20.0, sphere=sphere, exclude=30.0)
assert src[0]["nuse"] == 223 # low but fast
fwd = make_forward_solution(raw.info, trans, src, sphere)
orig_data = raw.get_data()
avg_data = raw.copy().set_eeg_reference("average").get_data()
assert_array_equal(avg_data[same], orig_data[same]) # not processed
raw.set_eeg_reference("REST", forward=fwd)
rest_data = raw.get_data()
assert_array_equal(rest_data[same], orig_data[same])
# should be more similar to an avg ref than nose ref
orig_corr = np.corrcoef(rest_data[picks].ravel(), orig_data[picks].ravel())[0, 1]
avg_corr = np.corrcoef(rest_data[picks].ravel(), avg_data[picks].ravel())[0, 1]
assert -0.6 < orig_corr < -0.5
assert 0.1 < avg_corr < 0.2
# and applying an avg ref after should work
avg_after = raw.set_eeg_reference("average").get_data()
assert_allclose(avg_after, avg_data, atol=1e-12)
with pytest.raises(TypeError, match='forward when ref_channels="REST"'):
raw.set_eeg_reference("REST")
fwd_bad = pick_channels_forward(fwd, raw.ch_names[:-1])
with pytest.raises(ValueError, match="Missing channels"):
raw.set_eeg_reference("REST", forward=fwd_bad)
# compare to FieldTrip
evoked = read_evokeds(ave_fname, baseline=(None, 0))[0]
evoked.info["bads"] = []
evoked.pick(picks="eeg")
assert len(evoked.ch_names) == 60
# Data obtained from FieldTrip with something like (after evoked.save'ing
# then scipy.io.savemat'ing fwd['sol']['data']):
# dat = ft_read_data('ft-ave.fif');
# load('leadfield.mat', 'G');
# dat_ref = ft_preproc_rereference(dat, 'all', 'rest', true, G);
# sprintf('%g ', dat_ref(:, 171));
data_array = "-3.3265e-05 -3.2419e-05 -3.18758e-05 -3.24079e-05 -3.39801e-05 -3.40573e-05 -3.24163e-05 -3.26896e-05 -3.33814e-05 -3.54734e-05 -3.51289e-05 -3.53229e-05 -3.51532e-05 -3.53149e-05 -3.4505e-05 -3.03462e-05 -2.81848e-05 -3.08895e-05 -3.27158e-05 -3.4605e-05 -3.47728e-05 -3.2459e-05 -3.06552e-05 -2.53255e-05 -2.69671e-05 -2.83425e-05 -3.12836e-05 -3.30965e-05 -3.34099e-05 -3.32766e-05 -3.32256e-05 -3.36385e-05 -3.20796e-05 -2.7108e-05 -2.47054e-05 -2.49589e-05 -2.7382e-05 -3.09774e-05 -3.12003e-05 -3.1246e-05 -3.07572e-05 -2.64942e-05 -2.25505e-05 -2.67194e-05 -2.86e-05 -2.94903e-05 -2.96249e-05 -2.92653e-05 -2.86472e-05 -2.81016e-05 -2.69737e-05 -2.48076e-05 -3.00473e-05 -2.73404e-05 -2.60153e-05 -2.41608e-05 -2.61937e-05 -2.5539e-05 -2.47104e-05 -2.35194e-05" # noqa: E501
want = np.array(data_array.split(" "), float)
norm = np.linalg.norm(want)
idx = np.argmin(np.abs(evoked.times - 0.083))
assert idx == 170
old = evoked.data[:, idx].ravel()
exp_var = 1 - np.linalg.norm(want - old) / norm
assert 0.006 < exp_var < 0.008
evoked.set_eeg_reference("REST", forward=fwd)
exp_var_old = 1 - np.linalg.norm(evoked.data[:, idx] - old) / norm
assert 0.005 < exp_var_old <= 0.009
exp_var = 1 - np.linalg.norm(evoked.data[:, idx] - want) / norm
assert 0.995 < exp_var <= 1
@testing.requires_testing_data
@pytest.mark.parametrize("inst_type", ["raw", "epochs"])
@pytest.mark.parametrize(
"ref_channels, expectation",
[
(
{2: "EEG 001"},
pytest.raises(
TypeError,
match="Keys in the ref_channels dict must be strings. "
"Your dict has keys of type int.",
),
),
(
{"EEG 001": (1, 2)},
pytest.raises(
TypeError,
match="Values in the ref_channels dict must be strings. "
"Your dict has values of type int.",
),
),
(
{"EEG 001": [1, 2]},
pytest.raises(
TypeError,
match="Values in the ref_channels dict must be strings. "
"Your dict has values of type int.",
),
),
(
{"EEG 999": "EEG 001"},
pytest.raises(
ValueError,
match=r"ref_channels dict contains invalid key\(s\) \(EEG 999\) "
"that are not names of channels in the instance.",
),
),
(
{"EEG 001": "EEG 999"},
pytest.raises(
ValueError,
match=r"ref_channels dict contains invalid value\(s\) \(EEG 999\) "
"that are not names of channels in the instance.",
),
),
(
{"EEG 001": "EEG 057"},
pytest.warns(
RuntimeWarning,
match=r"ref_channels dict contains value\(s\) \(EEG 057\) "
"that are marked as bad channels.",
),
),
(
{"EEG 001": "STI 001"},
pytest.warns(
RuntimeWarning,
match=(
r"Channel EEG 001 \(eeg\) is referenced to channel "
r"STI 001 which is a different channel type \(stim\)."
),
),
),
(
{"EEG 001": "EEG 001"},
pytest.warns(
RuntimeWarning,
match=(
"Channel EEG 001 is self-referenced, "
"which will nullify the channel."
),
),
),
(
{"EEG 001": "EEG 002", "EEG 002": "EEG 003", "EEG 003": "EEG 005"},
nullcontext(),
),
(
{
"EEG 001": ["EEG 002", "EEG 003"],
"EEG 002": "EEG 003",
"EEG 003": "EEG 005",
},
nullcontext(),
),
],
)
def test_set_eeg_reference_dict(ref_channels, inst_type, expectation):
"""Test setting dict-based reference."""
if inst_type == "raw":
inst = read_raw_fif(fif_fname).crop(0, 1).pick(picks=["eeg", "stim"])
# Test re-referencing Epochs object
elif inst_type == "epochs":
raw = read_raw_fif(fif_fname, preload=False)
events = read_events(eve_fname)
inst = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
preload=False,
)
with pytest.raises(
RuntimeError,
match="By default, MNE does not load data.*Applying a reference requires.*",
):
inst.set_eeg_reference(ref_channels=ref_channels)
inst.load_data()
inst.info["bads"] = ["EEG 057"]
with expectation:
reref, _ = set_eeg_reference(inst.copy(), ref_channels, copy=False)
if isinstance(expectation, nullcontext):
# Check that the custom_ref_applied is set correctly:
assert reref.info["custom_ref_applied"] == FIFF.FIFFV_MNE_CUSTOM_REF_ON
# Get raw data
_data = inst._data
# Get that channels that were and weren't re-referenced:
ch_raw = pick_channels(
inst.ch_names,
[ch for ch in inst.ch_names if ch not in list(ref_channels.keys())],
)
ch_reref = pick_channels(inst.ch_names, list(ref_channels.keys()), ordered=True)
# Check that the non re-reference channels are untouched:
assert_allclose(
_data[..., ch_raw, :], reref._data[..., ch_raw, :], 1e-6, atol=1e-15
)
# Compute the reference data:
ref_data = []
for val in ref_channels.values():
if isinstance(val, str):
val = [val] # pick_channels expects a list
ref_data.append(
_data[..., pick_channels(inst.ch_names, val, ordered=True), :].mean(
-2, keepdims=True
)
)
if inst_type == "epochs":
ref_data = np.concatenate(ref_data, axis=1)
else:
ref_data = np.squeeze(np.array(ref_data))
assert_allclose(
_data[..., ch_reref, :],
reref._data[..., ch_reref, :] + ref_data,
1e-6,
atol=1e-15,
)
@testing.requires_testing_data
@pytest.mark.parametrize("inst_type", ("raw", "epochs", "evoked"))
def test_set_bipolar_reference(inst_type):
"""Test bipolar referencing."""
raw = read_raw_fif(fif_fname, preload=True)
raw.apply_proj()
if inst_type == "raw":
inst = raw
del raw
elif inst_type in ["epochs", "evoked"]:
events = find_events(raw, stim_channel="STI 014")
epochs = Epochs(raw, events, tmin=-0.3, tmax=0.7, preload=True)
inst = epochs
if inst_type == "evoked":
inst = epochs.average()
del epochs
ch_info = {"kind": FIFF.FIFFV_EOG_CH, "extra": "some extra value"}
with pytest.raises(KeyError, match="key errantly present"):
set_bipolar_reference(inst, "EEG 001", "EEG 002", "bipolar", ch_info)
ch_info.pop("extra")
reref = set_bipolar_reference(inst, "EEG 001", "EEG 002", "bipolar", ch_info)
assert reref.info["custom_ref_applied"]
# Compare result to a manual calculation
a = inst.copy().pick(["EEG 001", "EEG 002"])
a = a._data[..., 0, :] - a._data[..., 1, :]
b = reref.copy().pick(["bipolar"])._data[..., 0, :]
assert_allclose(a, b)
# Original channels should be replaced by a virtual one
assert "EEG 001" not in reref.ch_names
assert "EEG 002" not in reref.ch_names
assert "bipolar" in reref.ch_names
# Check channel information
bp_info = reref.info["chs"][reref.ch_names.index("bipolar")]
an_info = inst.info["chs"][inst.ch_names.index("EEG 001")]
for key in bp_info:
if key == "coil_type":
assert bp_info[key] == FIFF.FIFFV_COIL_EEG_BIPOLAR, key
elif key == "kind":
assert bp_info[key] == FIFF.FIFFV_EOG_CH, key
elif key != "ch_name":
assert_equal(bp_info[key], an_info[key], err_msg=key)
# Minimalist call
reref = set_bipolar_reference(inst, "EEG 001", "EEG 002")
assert "EEG 001-EEG 002" in reref.ch_names
# Minimalist call with twice the same anode
reref = set_bipolar_reference(
inst, ["EEG 001", "EEG 001", "EEG 002"], ["EEG 002", "EEG 003", "EEG 003"]
)
assert "EEG 001-EEG 002" in reref.ch_names
assert "EEG 001-EEG 003" in reref.ch_names
# Set multiple references at once
reref = set_bipolar_reference(
inst,
["EEG 001", "EEG 003"],
["EEG 002", "EEG 004"],
["bipolar1", "bipolar2"],
[{"kind": FIFF.FIFFV_EOG_CH}, {"kind": FIFF.FIFFV_EOG_CH}],
)
a = inst.copy().pick(["EEG 001", "EEG 002", "EEG 003", "EEG 004"])
a = np.concatenate(
[
a._data[..., :1, :] - a._data[..., 1:2, :],
a._data[..., 2:3, :] - a._data[..., 3:4, :],
],
axis=-2,
)
b = reref.copy().pick(["bipolar1", "bipolar2"])._data
assert_allclose(a, b)
# Test creating a bipolar reference that doesn't involve EEG channels:
# it should not set the custom_ref_applied flag
reref = set_bipolar_reference(
inst,
"MEG 0111",
"MEG 0112",
ch_info={"kind": FIFF.FIFFV_MEG_CH},
verbose="error",
)
assert not reref.info["custom_ref_applied"]
assert "MEG 0111-MEG 0112" in reref.ch_names
# Test a battery of invalid inputs
pytest.raises(
ValueError,
set_bipolar_reference,
inst,
"EEG 001",
["EEG 002", "EEG 003"],
"bipolar",
)
pytest.raises(
ValueError,
set_bipolar_reference,
inst,
["EEG 001", "EEG 002"],
"EEG 003",
"bipolar",
)
pytest.raises(
ValueError,
set_bipolar_reference,
inst,
"EEG 001",
"EEG 002",
["bipolar1", "bipolar2"],
)
pytest.raises(
ValueError,
set_bipolar_reference,
inst,
"EEG 001",
"EEG 002",
"bipolar",
ch_info=[{"foo": "bar"}, {"foo": "bar"}],
)
pytest.raises(
ValueError, set_bipolar_reference, inst, "EEG 001", "EEG 002", ch_name="EEG 003"
)
# Test if bad anode/cathode raises error if on_bad="raise"
inst.info["bads"] = ["EEG 001"]
pytest.raises(
ValueError, set_bipolar_reference, inst, "EEG 001", "EEG 002", on_bad="raise"
)
inst.info["bads"] = ["EEG 002"]
pytest.raises(
ValueError, set_bipolar_reference, inst, "EEG 001", "EEG 002", on_bad="raise"
)
# Test if bad anode/cathode raises warning if on_bad="warn"
inst.info["bads"] = ["EEG 001"]
pytest.warns(
RuntimeWarning, set_bipolar_reference, inst, "EEG 001", "EEG 002", on_bad="warn"
)
inst.info["bads"] = ["EEG 002"]
pytest.warns(
RuntimeWarning, set_bipolar_reference, inst, "EEG 001", "EEG 002", on_bad="warn"
)
def _check_channel_names(inst, ref_names):
"""Check channel names."""
if isinstance(ref_names, str):
ref_names = [ref_names]
# Test that the names of the reference channels are present in `ch_names`
ref_idx = pick_channels(inst.info["ch_names"], ref_names)
assert len(ref_idx) == len(ref_names)
# Test that the names of the reference channels are present in the `chs`
# list
inst.info._check_consistency() # Should raise no exceptions
@testing.requires_testing_data
def test_add_reference():
"""Test adding a reference."""
raw = read_raw_fif(fif_fname, preload=True)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# check if channel already exists
pytest.raises(ValueError, add_reference_channels, raw, raw.info["ch_names"][0])
# add reference channel to Raw
raw_ref = add_reference_channels(raw, "Ref", copy=True)
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
_check_channel_names(raw_ref, "Ref")
orig_nchan = raw.info["nchan"]
raw = add_reference_channels(raw, "Ref", copy=False)
assert_array_equal(raw._data, raw_ref._data)
assert_equal(raw.info["nchan"], orig_nchan + 1)
_check_channel_names(raw, "Ref")
# for Neuromag fif's, the reference electrode location is placed in
# elements [3:6] of each "data" electrode location
assert_allclose(
raw.info["chs"][-1]["loc"][:3], raw.info["chs"][picks_eeg[0]]["loc"][3:6], 1e-6
)
ref_idx = raw.ch_names.index("Ref")
ref_data, _ = raw[ref_idx]
assert_array_equal(ref_data, 0)
# add reference channel to Raw when no digitization points exist
raw = read_raw_fif(fif_fname).crop(0, 1).load_data()
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
del raw.info["dig"]
raw_ref = add_reference_channels(raw, "Ref", copy=True)
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
_check_channel_names(raw_ref, "Ref")
orig_nchan = raw.info["nchan"]
raw = add_reference_channels(raw, "Ref", copy=False)
assert_array_equal(raw._data, raw_ref._data)
assert_equal(raw.info["nchan"], orig_nchan + 1)
_check_channel_names(raw, "Ref")
# Test adding an existing channel as reference channel
pytest.raises(ValueError, add_reference_channels, raw, raw.info["ch_names"][0])
# add two reference channels to Raw
raw_ref = add_reference_channels(raw, ["M1", "M2"], copy=True)
_check_channel_names(raw_ref, ["M1", "M2"])
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 2)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
assert_array_equal(raw_ref._data[-2:, :], 0)
raw = add_reference_channels(raw, ["M1", "M2"], copy=False)
_check_channel_names(raw, ["M1", "M2"])
ref_idx = raw.ch_names.index("M1")
ref_idy = raw.ch_names.index("M2")
ref_data, _ = raw[[ref_idx, ref_idy]]
assert_array_equal(ref_data, 0)
# add reference channel to epochs
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
)
# default: proj=True, after which adding a Ref channel is prohibited
pytest.raises(RuntimeError, add_reference_channels, epochs, "Ref")
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
proj="delayed",
)
epochs_ref = add_reference_channels(epochs, "Ref", copy=True)
assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 1)
_check_channel_names(epochs_ref, "Ref")
ref_idx = epochs_ref.ch_names.index("Ref")
ref_data = epochs_ref.get_data(picks=[ref_idx])[:, 0]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(epochs.get_data(picks_eeg), epochs_ref.get_data(picks_eeg))
# add two reference channels to epochs
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
proj="delayed",
)
with pytest.warns(RuntimeWarning, match="for this channel is unknown or ambiguous"):
epochs_ref = add_reference_channels(epochs, ["M1", "M2"], copy=True)
assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 2)
_check_channel_names(epochs_ref, ["M1", "M2"])
ref_idx = epochs_ref.ch_names.index("M1")
ref_idy = epochs_ref.ch_names.index("M2")
assert_equal(epochs_ref.info["chs"][ref_idx]["ch_name"], "M1")
assert_equal(epochs_ref.info["chs"][ref_idy]["ch_name"], "M2")
ref_data = epochs_ref.get_data([ref_idx, ref_idy])
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(epochs.get_data(picks_eeg), epochs_ref.get_data(picks_eeg))
# add reference channel to evoked
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
proj="delayed",
)
evoked = epochs.average()
evoked_ref = add_reference_channels(evoked, "Ref", copy=True)
assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 1)
_check_channel_names(evoked_ref, "Ref")
ref_idx = evoked_ref.ch_names.index("Ref")
ref_data = evoked_ref.data[ref_idx, :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
assert_array_equal(evoked.data[picks_eeg, :], evoked_ref.data[picks_eeg, :])
# add two reference channels to evoked
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(
raw,
events=events,
event_id=1,
tmin=-0.2,
tmax=0.5,
picks=picks_eeg,
preload=True,
proj="delayed",
)
evoked = epochs.average()
with pytest.warns(RuntimeWarning, match="for this channel is unknown or ambiguous"):
evoked_ref = add_reference_channels(evoked, ["M1", "M2"], copy=True)
assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 2)
_check_channel_names(evoked_ref, ["M1", "M2"])
ref_idx = evoked_ref.ch_names.index("M1")
ref_idy = evoked_ref.ch_names.index("M2")
ref_data = evoked_ref.data[[ref_idx, ref_idy], :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
assert_array_equal(evoked.data[picks_eeg, :], evoked_ref.data[picks_eeg, :])
# Test invalid inputs
raw = read_raw_fif(fif_fname, preload=False)
with pytest.raises(RuntimeError, match="loaded"):
add_reference_channels(raw, ["Ref"])
raw.load_data()
with pytest.raises(ValueError, match="Channel.*already.*"):
add_reference_channels(raw, raw.ch_names[:1])
with pytest.raises(TypeError, match="instance of"):
add_reference_channels(raw, 1)
# gh-10878
raw = read_raw_fif(raw_fname).crop(0, 1, include_tmax=False).load_data()
data = raw.copy().add_reference_channels(["REF"]).pick(picks="eeg")
data = data.get_data()
epochs = make_fixed_length_epochs(raw).load_data()
data_2 = epochs.copy().add_reference_channels(["REF"]).pick(picks="eeg")
data_2 = data_2.get_data(copy=False)[0]
assert_allclose(data, data_2)
evoked = epochs.average()
data_3 = evoked.copy().add_reference_channels(["REF"]).pick(picks="eeg")
data_3 = data_3.get_data()
assert_allclose(data, data_3)
@pytest.mark.parametrize("n_ref", (1, 2))
def test_add_reorder(n_ref):
"""Test that a reference channel can be added and then data reordered."""
# gh-8300
raw = read_raw_fif(raw_fname).crop(0, 0.1).del_proj().pick("eeg")
assert len(raw.ch_names) == 60
chs = [f"EEG {60 + ii:03}" for ii in range(1, n_ref)] + ["EEG 000"]
with pytest.raises(RuntimeError, match="preload"):
with _record_warnings(): # ignore multiple warning
add_reference_channels(raw, chs, copy=False)
raw.load_data()
if n_ref == 1:
ctx = nullcontext()
else:
assert n_ref == 2
ctx = pytest.warns(RuntimeWarning, match="this channel is unknown or ambiguous")
with ctx:
add_reference_channels(raw, chs, copy=False)
data = raw.get_data()
assert_array_equal(data[-1], 0.0)
assert raw.ch_names[-n_ref:] == chs
raw.reorder_channels(raw.ch_names[-1:] + raw.ch_names[:-1])
assert raw.ch_names == [f"EEG {ii:03}" for ii in range(60 + n_ref)]
data_new = raw.get_data()
data_new = np.concatenate([data_new[1:], data_new[:1]])
assert_allclose(data, data_new)
def test_bipolar_combinations():
"""Test bipolar channel generation."""
ch_names = ["CH" + str(ni + 1) for ni in range(10)]
info = create_info(
ch_names=ch_names, sfreq=1000.0, ch_types=["eeg"] * len(ch_names)
)
raw_data = np.random.randn(len(ch_names), 1000)
raw = RawArray(raw_data, info)
def _check_bipolar(raw_test, ch_a, ch_b):
picks = [raw_test.ch_names.index(ch_a + "-" + ch_b)]
get_data_res = raw_test.get_data(picks=picks)[0, :]
manual_a = raw_data[ch_names.index(ch_a), :]
manual_b = raw_data[ch_names.index(ch_b), :]
assert_array_equal(get_data_res, manual_a - manual_b)
# test classic EOG/ECG bipolar reference (only two channels per pair).
raw_test = set_bipolar_reference(raw, ["CH2"], ["CH1"], copy=True)
_check_bipolar(raw_test, "CH2", "CH1")
# test all combinations.
a_channels, b_channels = zip(*itertools.combinations(ch_names, 2))
a_channels, b_channels = list(a_channels), list(b_channels)
raw_test = set_bipolar_reference(raw, a_channels, b_channels, copy=True)
for ch_a, ch_b in zip(a_channels, b_channels):
_check_bipolar(raw_test, ch_a, ch_b)
# check if reference channels have been dropped.
assert len(raw_test.ch_names) == len(a_channels)
raw_test = set_bipolar_reference(
raw, a_channels, b_channels, drop_refs=False, copy=True
)
# check if reference channels have been kept correctly.
assert len(raw_test.ch_names) == len(a_channels) + len(ch_names)
for idx, ch_label in enumerate(ch_names):
manual_ch = raw_data[np.newaxis, idx]
assert_array_equal(raw_test.get_data(ch_label), manual_ch)
# test bipolars with a channel in both list (anode & cathode).
raw_test = set_bipolar_reference(raw, ["CH2", "CH1"], ["CH1", "CH2"], copy=True)
_check_bipolar(raw_test, "CH2", "CH1")
_check_bipolar(raw_test, "CH1", "CH2")
# test if bipolar channel is bad if anode is a bad channel
raw.info["bads"] = ["CH1"]
raw_test = set_bipolar_reference(
raw, ["CH1"], ["CH2"], on_bad="ignore", ch_name="bad_bipolar", copy=True
)
assert raw_test.info["bads"] == ["bad_bipolar"]
# test if bipolar channel is bad if cathode is a bad channel
raw.info["bads"] = ["CH2"]
raw_test = set_bipolar_reference(
raw, ["CH1"], ["CH2"], on_bad="ignore", ch_name="bad_bipolar", copy=True
)
assert raw_test.info["bads"] == ["bad_bipolar"]