orphan: |
---|
MNE-Python can read data on-demand using the preload option provided in raw reading functions. For example:
from mne import io from mne.datasets import sample data_path = sample.data_path() raw_fname = data_path / 'MEG' / 'sample' / 'sample_audvis_filt-0-40_raw.fif' raw = io.read_raw_fif(raw_fname, preload=False)
Note
Filtering, resampling and dropping or selecting channels does not work with preload=False.
Similarly, epochs can also be be read from disk on-demand. For example:
import mne events = mne.find_events(raw) event_id, tmin, tmax = 1, -0.2, 0.5 picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, eog=True) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(eeg=80e-6, eog=150e-6), preload=False)
When preload=False, the epochs data is loaded from the disk on-demand. Note that preload=False for epochs will work even if the raw object has been loaded with preload=True. Preloading is also supported for :func:`mne.read_epochs`.
Warning
This comes with a caveat. When preload=False, data rejection based on peak-to-peak thresholds is executed when the data is loaded from disk, not when the Epochs object is created.
To explicitly reject artifacts with preload=False, use the function :func:`mne.Epochs.drop_bad`.
To load the data if preload=False was initially selected, use the functions :func:`mne.io.Raw.load_data` and :func:`mne.Epochs.load_data`.
If you just want your raw data as a :class:`Numpy array <numpy.ndarray>` to work with it in a different framework you can use slicing syntax:
first_channel_data, times = raw[0, :] channels_3_and_4, times = raw[3:5, :]