[422372]: / functions / studyfunc / std_erpplot.m

Download this file

493 lines (454 with data), 24.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
% STD_ERPPLOT - Command line function to plot STUDY cluster component ERPs. Either
% displays grand mean ERPs for all requested clusters in the same figure,
% with ERPs for different conditions (if any) plotted in different colors.
% Else, displays ERP for each specified cluster in separate figures
% (per condition), each containing the cluster component ERPs plus
% the grand mean cluster ERP (in bold). ERPs can be plotted only if
% component ERPs were computed and saved in the STUDY EEG
% datasets.
% These can be computed during pre-clustering using the gui-based
% function POP_PRECLUST or the equivalent command line functions
% EEG_CREATEDATA and EEG_PRECLUST. Called by POP_CLUSTEDIT.
% and STD_PROPPLOT.
% Usage:
% >> [STUDY] = std_erpplot(STUDY, ALLEEG, key1, val1, key2, val2);
% >> [STUDY erpdata erptimes pgroup pcond pinter] = std_erpplot(STUDY, ALLEEG, ...);
%
% Inputs:
% STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG.
% ALLEEG - global EEGLAB vector of EEG structures for the datasets included
% in the STUDY. A STUDY set ALLEEG is typically created by LOAD_ALLEEG.
% Optional inputs for channel plotting:
% 'channels' - [numeric vector] specific channel group to plot. By
% default, the grand mean channel ERP is plotted (using the
% same format as for the cluster component means described
% above). Default is to plot all channels.
% 'subject' - [numeric vector] In 'changrp' mode (above), index of
% the subject(s) to plot. Else by default, plot all components
% in the cluster.
% 'plotsubjects' - ['on'|'off'] When 'on', plot ERP of all subjects.
% 'noplot' - ['on'|'off'] When 'on', only return output values. Default
% is 'off'.
% 'topoplotopt' - [cell array] options for topoplot plotting.
%
% Optional inputs for component plotting:
% 'clusters' - [numeric vector|'all'] indices of clusters to plot.
% If no component indices ('comps' below) are given, the average
% ERPs of the requested clusters are plotted in the same figure,
% with ERPs for different conditions (and groups if any) plotted
% in different colors. In 'comps' (below) mode, ERPS for each
% specified cluster are plotted in separate figures (one per
% condition), each overplotting cluster component ERPs plus the
% average cluster ERP in bold. Note this parameter has no effect
% if the 'comps' option (below) is used. {default: 'all'}
% 'comps' - [numeric vector|'all'] indices of the cluster components to plot.
% Note that 'comps', 'all' is equivalent to 'plotsubjects', 'on'.
%
% Other optional inputs:
% 'key','val' - All optional inputs to POP_ERPPARAMS are also accepted here
% to plot subset of time, statistics etc. The values used by default
% are the ones set using POP_ERPPARAMS and stored in the
% STUDY structure.
%
% Outputs:
% STUDY - the input STUDY set structure with plotted cluster mean
% ERPs data to allow quick replotting
% erpdata - [cell] ERP data for each condition, group and subjects.
% size of cell array is [nconds x ngroups]. Size of each element
% is [times x subjects] for data channels or [times x components]
% for component clusters. This array may be gicen as input
% directly to the STATCOND function or STD_STAT function
% to compute statistics.
% erptimes - [array] ERP time point latencies.
% pgroup - [array or cell] p-values group statistics. Output of the
% STATCOND function.
% pcond - [array or cell] condition statistics. Output of the STATCOND
% function.
% pinter - [array or cell] groups x conditions statistics. Output of
% STATCOND function.
%
% Example:
% >> [STUDY] = std_erpplot(STUDY,ALLEEG, 'clusters', 2, 'comps', 'all');
% % Plot cluster-2 component ERPs plus the mean ERP in bold.
%
% See also POP_CLUSTEDIT, POP_PRECLUST, EEG_CREATEDATA, EEG_PRECLUST, STD_PROPPLOT
%
% Authors: Arnaud Delorme, CERCO, August, 2006-
% Copyright (C) Arnaud Delorme, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [STUDY, erpdata, alltimes, pgroup, pcond, pinter] = std_erpplot(STUDY, ALLEEG, varargin)
if nargin < 2
help std_erpplot;
return;
end
erpdata = []; alltimes = [];
pgroup = []; pcond = []; pinter = [];
% find datatype and default options
% ---------------------------------
dtype = 'erp';
dsubtype = '';
for ind = 1:2:length(varargin)
if strcmpi(varargin{ind}, 'datatype')
dtype = varargin{ind+1};
end
end
if strcmpi(dtype(1:3), 'erp' )
if length(dtype) > 3, dsubtype = dtype(4:end); dtype = 'erp'; end
elseif strcmpi(dtype(1:4), 'spec')
if length(dtype) > 4, dsubtype = dtype(5:end); dtype = 'spec'; end
end
% get parameters
% --------------
eval( [ 'tmp = pop_' dtype 'params(STUDY, varargin{:});' ...
'params = tmp.etc.' dtype 'params; clear tmp;' ] );
statstruct.etc = STUDY.etc;
statstruct = pop_statparams(statstruct, varargin{:});
% potentially missing fields
% --------------------------
fields = { 'filter' 'subtractsubjectmean' 'timerange' 'freqrange' 'topotime' 'topofreq' 'averagechan'};
defaultval = { [] 'off' [] [] [] [] };
for ind=1:length(fields)
if ~isfield(params, fields{ind})
params = setfield(params, fields{ind}, defaultval{ind});
end
end
% decode parameters
% -----------------
if isempty(varargin)
tmplocs = eeg_mergelocs(ALLEEG.chanlocs);
options.channels = { tmplocs.labels };
else
options = mystruct(varargin);
end
options = myrmfield( options, myfieldnames(params));
options = myrmfield( options, myfieldnames(statstruct.etc.statistics));
options = myrmfield( options, { 'threshold' 'statistics' } ); % for backward compatibility
opt = finputcheck( options, ...
{ 'design' 'integer' [] STUDY.currentdesign;
'plotstderr' 'string' [] 'off';
'channels' 'cell' [] {};
'clusters' 'integer' [] [];
'datatype' 'string' {} 'erp';
'mode' 'string' [] '';
'comps' { 'string', 'integer' } [] [];
'statmode' 'string' { 'subjects','common','trials' } 'subjects';
'avgmode' 'string' { 'mean','rms','median' } 'mean';
'plotmode' 'string' { 'normal','condensed' } 'normal';
'unitx' 'string' { 'ms','Hz' } 'ms';
'plotsubjects' 'string' { 'on','off' } 'off';
'detachplots' 'string' { 'on','off' } params.detachplots;
'noplot' 'string' { 'on','off' } 'off';
'topoplotopt' 'cell' {} { 'style' 'both' };
'subject' 'string' [] '' }, 'std_erpplot');
if ischar(opt), error(opt); end
if ischar(opt.comps), opt.comps = []; opt.plotsubjects = 'on'; end
if ~isempty(params.topofreq) && strcmpi(opt.datatype, 'spec'), params.topotime = params.topofreq; end
if ~isempty(params.freqrange), params.timerange = params.freqrange; end
datatypestr = upper(opt.datatype);
if strcmpi(datatypestr, 'spec'), datatypestr = 'Spectrum'; end
% =======================================================================
% below this line, all the code should be non-specific to ERP or spectrum
% =======================================================================
allconditions = {};
allgroups = {};
condname = '';
groupname = '';
if length(STUDY.design(opt.design).variable) > 0, allconditions = STUDY.design(opt.design).variable(1).value; condname = STUDY.design(opt.design).variable(1).label; end
if length(STUDY.design(opt.design).variable) > 1, allgroups = STUDY.design(opt.design).variable(2).value; groupname = STUDY.design(opt.design).variable(2).label; end
% for backward compatibility
% --------------------------
stats = statstruct.etc.statistics;
stats.fieldtrip.channelneighbor = struct([]); % assumes one channel or 1 component
if isempty(STUDY.design(opt.design).variable)
stats.paired = { };
else
stats.paired = { STUDY.design(opt.design).variable(:).pairing };
end
if strcmpi(opt.mode, 'comps'), opt.plotsubjects = 'on'; end
if strcmpi(stats.singletrials, 'off') && ((~isempty(opt.subject) || ~isempty(opt.comps)))
if strcmpi(stats.condstats, 'on') || strcmpi(stats.groupstats, 'on')
stats.groupstats = 'off';
stats.condstats = 'off';
disp('No statistics for single subject/component, to get statistics compute single-trial measures');
end
end
if ~isempty(params.topotime) && ~isnan(params.topotime(1)) && length(opt.channels) < 5 && isempty(opt.clusters)
warndlg2(strvcat('ERP parameters indicate that you wish to plot scalp maps', 'Select at least 5 channels to plot topography'));
return;
end
if ~strcmpi(opt.avgmode, 'mean') && (isempty(opt.channels) || isempty(params.topotime))
error('Can only change avgmode when plotting scalp topographies')
end
plotcurveopt = {};
if length(opt.clusters) > 1
plotcurveopt = { 'figure' 'off' };
params.plotconditions = 'together';
params.plotgroups = 'together';
stats.condstats = 'off';
stats.groupstats = 'off';
end
% if length(opt.channels) > 1 && strcmpi(opt.plotconditions, 'together') && strcmpi(opt.plotgroups, 'together')
% plotcurveopt = { 'figure' 'off' };
% opt.plotconditions = 'together';
% opt.plotgroups = 'together';
% opt.condstats = 'off';
% opt.groupstats = 'off';
% end
alpha = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.alpha, stats.fieldtrip.alpha);
mcorrect = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.mcorrect, stats.fieldtrip.mcorrect);
method = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.method, ['Fieldtrip ' stats.fieldtrip.method ]);
plotcurveopt = { plotcurveopt{:} ...
'ylim', params.ylim, ...
'threshold', alpha ...
'unitx' opt.unitx, ...
'filter', params.filter, ...
'plotgroups', params.plotgroups, ...
'effect', stats.effect, ...
'plotconditions', params.plotconditions };
% channel plotting
% ----------------
axcopyflag = 1;
if ~isempty(opt.channels)
if (isempty(params.topotime) || isnan(params.topotime(1))) && length(opt.channels) > 1 && strcmpi(stats.singletrials, 'on')
error('Cannot plot several channels on the same figure when using single trial statistics');
end
chaninds = 1:length(opt.channels);
if strcmpi(opt.datatype, 'erp')
[STUDY, erpdata, alltimes, ~, ~, fileparams] = std_readdata(STUDY, ALLEEG, 'channels', opt.channels(chaninds), 'timerange', params.timerange, ...
'subject', opt.subject, 'singletrials', stats.singletrials, 'design', opt.design, 'datatype', [dtype dsubtype]);
else
[STUDY, erpdata, alltimes, ~, ~, fileparams] = std_readdata(STUDY, ALLEEG, 'channels', opt.channels(chaninds), 'freqrange', params.freqrange, ...
'subject', opt.subject, 'singletrials', stats.singletrials, 'design', opt.design, 'datatype', [dtype dsubtype], 'rmsubjmean', params.subtractsubjectmean);
end
if isfield(fileparams, 'specmode') && ~strcmpi(fileparams.specmode, 'fft'), opt.unitx = [ opt.unitx 'psd' ]; end
if ~strcmpi(params.averagechan, 'off') && length(chaninds) > 1
for index = 1:length(erpdata(:))
if strcmpi(params.averagechan, 'on')
erpdata{index} = squeeze(mean(erpdata{index},2));
else
erpdata{index} = squeeze(sqrt(mean(erpdata{index}.^2,2)));
opt.unitx = 'rmsms';
end
end
if strcmpi(params.averagechan, 'rms')
opt.unitx = [ 'rms' opt.unitx ];
end
end
if isempty(erpdata), return; end
% select specific time
% --------------------
if ~isempty(params.topotime) && ~isnan(params.topotime(1))
[tmp, ti1] = min(abs(alltimes-params.topotime(1)));
[tmp, ti2] = min(abs(alltimes-params.topotime(end)));
for condind = 1:length(erpdata(:))
if ~isempty(erpdata{condind})
erpdata{condind} = mean(erpdata{condind}(ti1:ti2,:,:),1);
end
end
end
% compute baseline for spectrum
% -----------------------------
if strcmpi(params.subtractsubjectmean, 'on') && strcmpi(opt.datatype, 'spec')
count = 0;
for iSpec = 1:length(erpdata(:))
if ~isempty(erpdata{iSpec})
if count == 0, meanspec = zeros(size(erpdata{iSpec},1),1); end
if strcmpi(stats.singletrials, 'on')
meanspec = meanspec + mean(erpdata{iSpec},2);
else
meanspec = meanspec + erpdata{iSpec};
end
count = count+1;
end
end
meanspec = meanspec/count;
erpdata = cellfun(@(x)bsxfun(@minus, x, meanspec), erpdata, 'uniformoutput', false);
end
% compute statistics
% ------------------
if (isempty(params.topotime) || any(isnan(params.topotime))) && length(alpha) > 1
alpha = alpha(1);
end
if ~isempty(params.topotime) && all(~isnan(params.topotime))
statstruct = std_prepare_neighbors(statstruct, ALLEEG, 'channels', opt.channels);
stats.fieldtrip.channelneighbor = statstruct.etc.statistics.fieldtrip.channelneighbor;
end
[pcond, pgroup, pinter] = std_stat(erpdata, stats);
if (~isempty(pcond) && length(pcond{1}) == 1) || (~isempty(pgroup) && length(pgroup{1}) == 1), pcond = {}; pgroup = {}; pinter = {}; end % single subject STUDY
if ~isempty(params.topotime) && length(opt.channels) > 5 && ndims(erpdata{1}) < 3, pcond = {}; pgroup = {}; pinter = {}; end % topo plotting for single subject
if strcmpi(opt.noplot, 'on'), return; end
% get titles (not included in std_erspplot because it is not possible
% to merge channels for that function
% -----------------------------------
locsOri = eeg_mergelocs(ALLEEG.chanlocs);
locs = locsOri(std_chaninds(STUDY, opt.channels(chaninds)));
if ~strcmpi(params.averagechan, 'off') && length(chaninds) > 1
if length(chaninds) ~= length(locsOri)
chanlabels = { locs.labels };
chanlabels(2,:) = {','};
chanlabels(2,end) = {''};
locs(1).labels = [ chanlabels{:} ];
else
locs(1).labels = 'All channels';
end
locs(2:end) = [];
end
[alltitles, alllegends ] = std_figtitle('threshold', alpha, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ...
'statistics', method, 'condnames', allconditions, 'plotsubjects', opt.plotsubjects, 'cond2names', allgroups, 'chanlabels', { locs.labels }, ...
'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, ...
'condgroup', params.plotconditions, 'effect', stats.effect, 'factor1', condname, 'factor2', groupname);
% plot
% ----
indNonEmpty = find(~cellfun(@isempty, erpdata(:)));
if isempty(indNonEmpty)
error('All conditions are empty')
end
if ~isreal(erpdata{indNonEmpty(1)}(1)) % for spectrum FFT data
tmperpdata = cellfun(@(x)x.*conj(x), erpdata, 'uniformoutput', false);
else
tmperpdata = erpdata;
end
if ~isempty(params.topotime) && all(~isnan(params.topotime))
std_chantopo(tmperpdata, 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, 'caxis', params.ylim, ...
'mode', opt.avgmode, 'chanlocs', locs, 'threshold', alpha, 'titles', alltitles, 'topoplotopt', opt.topoplotopt, 'effect', stats.effect);
else
std_plotcurve(alltimes, tmperpdata, 'groupstats', pgroup, 'legend', alllegends, 'condstats', pcond, 'interstats', pinter, ...
'chanlocs', locs, 'titles', alltitles, 'plotsubjects', opt.plotsubjects, 'plotstderr', opt.plotstderr, ...
'condnames', allconditions, 'groupnames', allgroups, plotcurveopt{:});
end
set(gcf,'name',['Channel ' datatypestr ]);
axcopy(gca);
else
if length(opt.clusters) > 1 && strcmpi(stats.singletrials, 'on')
error('Cannot plot several components on the same figure when using single trial statistics');
end
% plot component
% --------------
if length(opt.clusters) > 1, figure('color', 'w'); end
nc = ceil(sqrt(length(opt.clusters)));
nr = ceil(length(opt.clusters)/nc);
comp_names = {};
for index = 1:length(opt.clusters)
if length(opt.clusters) > 1, subplot(nr,nc,index); end
if strcmpi(opt.datatype, 'erp')
[STUDY, erpdata, alltimes, ~, ~, fileparams] = std_readdata(STUDY, ALLEEG, 'clusters', opt.clusters(index), 'timerange', params.timerange, ...
'component', opt.comps, 'singletrials', stats.singletrials, 'design', opt.design, 'datatype', [dtype dsubtype]);
else
[STUDY, erpdata, alltimes, ~, ~, fileparams] = std_readdata(STUDY, ALLEEG, 'clusters', opt.clusters(index), 'freqrange', params.freqrange, ...
'component', opt.comps, 'singletrials', stats.singletrials, 'design', opt.design, 'datatype', [dtype dsubtype], 'rmsubjmean', params.subtractsubjectmean);
end
if isfield(fileparams, 'specmode') && ~strcmpi(fileparams.specmode, 'fft'), opt.unitx = [ opt.unitx 'psd' ]; end
if isempty(erpdata), return; end
% plot specific component
% -----------------------
if ~isempty(opt.comps)
comp_names = { STUDY.cluster(opt.clusters(index)).comps(opt.comps) };
opt.subject = STUDY.datasetinfo(STUDY.cluster(opt.clusters(index)).sets(1,opt.comps)).subject;
end
% remove NaNs and generate labels
% -------------------------------
erpdata2 = erpdata;
subjects = { STUDY.datasetinfo(STUDY.cluster(opt.clusters(index)).sets(1,:)).subject };
for iDat = 1:length(erpdata2(:))
if all(cellfun(@(x)size(x,2), erpdata2(:)) == length(subjects)) % NOT single trial data
keepInd = find(~isnan(erpdata2{iDat}(1,:)));
erpdata2{iDat} = erpdata2{iDat}(:,keepInd);
tmpSubjects = subjects(keepInd);
comps = STUDY.cluster(opt.clusters(index)).comps(keepInd);
else
tmpSubjects = subjects;
comps = STUDY.cluster(opt.clusters(index)).comps;
end
for iKeep = 1:length(tmpSubjects)
sbtitles{iDat}{iKeep} = [ tmpSubjects{iKeep} '/IC' num2str(comps(iKeep)) ];
end
end
sbtitles = reshape(sbtitles, size(erpdata2));
[pcond, pgroup, pinter] = std_stat(erpdata2, stats);
if strcmpi(opt.noplot, 'on'), return; end
[alltitles, alllegends ] = std_figtitle('threshold', alpha, 'plotsubjects', opt.plotsubjects, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ...
'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(index)).name, 'compnames', comp_names, ...
'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, 'condgroup', params.plotconditions, ...
'effect', stats.effect, 'factor1', condname, 'factor2', groupname);
if length(opt.clusters) > 1 && index < length(opt.clusters), alllegends = {}; end
std_plotcurve(alltimes, erpdata2, 'condnames', allconditions, 'legend', alllegends, 'groupnames', allgroups, 'plotstderr', opt.plotstderr, ...
'titles', alltitles, 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, ...
'plotsubjects', opt.plotsubjects, plotcurveopt{:});
%--------------------------------------------------------------------------
if all([strcmp(opt.plotsubjects,'on') strcmp(opt.detachplots,'on')])
[alltitlestmp] = std_figtitle('threshold', alpha, 'plotsubjects', opt.plotsubjects, 'mcorrect', mcorrect, 'condstat', 'off', 'cond2stat', 'off', ...
'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(index)).name, 'compnames', comp_names, ...
'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, 'condgroup', params.plotconditions);
handles = findall(0,'Type','Figure', 'Tag','tmp_curvetag');
std_detachplots('','','data',erpdata2,'figtitles', {alltitlestmp{:}}','sbtitles',sbtitles,'handles', handles, 'filter',params.filter);
axcopyflag = 0;
end
%--------------------------------------------------------------------------
end
tmpgcf = gcf;
set(tmpgcf,'name', ['Component ' datatypestr ] );
if axcopyflag
haxis = findall(tmpgcf,'type','axes');
for i= 1: length(haxis)
axcopy(haxis(i));
end
end
end
% remove fields and ignore fields who are absent
% ----------------------------------------------
function s = myrmfield(s, f)
for index = 1:length(f)
if isfield(s, f{index})
s = rmfield(s, f{index});
end
end
% convert to structure (but take into account cells)
% --------------------------------------------------
function s = mystruct(v)
for index=1:length(v)
if iscell(v{index})
v{index} = { v{index} };
end
end
try
s = struct(v{:});
catch, error('Parameter error'); end
% convert to structure (but take into account cells)
% --------------------------------------------------
function s = myfieldnames(v)
s = fieldnames(v);
if isfield(v, 'eeglab')
s2 = fieldnames(v.eeglab);
s = { s{:} s2{:} };
end
if isfield(v, 'fieldtrip')
s3 = fieldnames(v.fieldtrip);
for index=1:length(s3)
s3{index} = [ 'fieldtrip' s3{index} ];
end
s = { s{:} s3{:} };
end