[422372]: / functions / studyfunc / pop_clustedit.m

Download this file

969 lines (914 with data), 60.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
% POP_CLUSTEDIT - graphic user interface (GUI)-based function with editing and plotting
% options for visualizing and manipulating an input STUDY structure.
% Only component measures (e.g., dipole locations, scalp maps, spectra,
% ERPs, ERSPs, ITCs) that have been computed and saved in the study EEG
% datasets can be visualized. These can be computed during pre-clustering
% using the GUI-based function POP_PRECLUST or the equivalent command
% line functions STD_PRECLUST. To use dipole locations for clustering,
% they must first be stored in the EEG dataset structures using DIPFIT.
% Supported cluster editing functions include new cluster creation, cluster
% merging, outlier rejection, and cluster renaming. Components can also be
% moved from one cluster to another or to the outlier cluster.
% Usage:
% >> STUDY = pop_clustedit(STUDY, ALLEEG, clusters, addui, addgeom);
% Inputs:
% ALLEEG - Top-level EEGLAB vector of loaded EEG structures for the dataset(s)
% in the STUDY. ALLEEG for a STUDY set is typically loaded using
% POP_LOADSTUDY, or in creating a new STUDY, using POP_CREATESTUDY.
% STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG.
%
% Optional inputs:
% clusters - [integer vector] of cluster numbers. These clusters will be visualized
% and manipulated in the POP_CLUSTEDIT graphic interface. There are
% restrictions on which clusters can be loaded together. The clusters must
% either originate from the same clustering (same PRE_CLUSTERING and
% subsequent POP_CLUST execution), or they must all be leaf clusters
% (i.e., clusters with no child clusters) {default: all leaf clusters}.
% addui - [struct] additional uicontrols entries for the graphic
% interface. Must contains the fields "uilist", "geometry".
%
% Outputs:
% STUDY - The input STUDY set structure modified according to specified user edits,
% if any. Plotted cluster measure means (maps, ERSPs, etc.) are added to
% the STUDY structure after they are first plotted to allow quick replotting.
%
% Graphic interface buttons:
% "Select cluster to plot" - [list box] Displays available clusters to plot (format is
% 'cluster name (number of components)'). The presented clusters depend
% on the optional input variable 'clusters'. Selecting (clicking on) a
% cluster from the list will display the selected cluster components in the
% "Select component(s) to plot" list box. Use the plotting buttons below
% to plot selected measures of the selected cluster. Additional editing
% options (renaming the cluster, rejecting outliers, moving components to
% another cluster) are also available. The option 'All N cluster centroids'
% at the top of the list displays all the clusters in the list except the
% 'Notcluster', 'Outlier' and 'ParentCluster' clusters. Selecting this option
% will plot the cluster centroids (i.e. ERP, ERSP, ...) in a single figure.
% "Select component(s) to plot" - [list box] Displays the ICA components of the currently
% selected cluster (in the "Select cluster to plot" list box). Each component
% has the format: 'subject name, component index'. Multiple components can be
% selected from the list. Use the plotting buttons below to plot different
% measures of the selected components on different figures. Selecting the
% "All components" option is equivalent to using the cluster plotting buttons.
% Additional editing options are reassigning the selected components to
% another cluster or moving them to the outlier cluster.
% "Plot Cluster properties" - [button] Displays in one figure all the mean cluster measures
% (e.g., dipole locations, scalp maps, spectra, etc.) that were calculated
% and saved in the EEG datasets. If there is more than one condition, the ERP
% and the spectrum will have different colors for each condition. The ERSP
% and ITC plots will show only the first condition; clicking on the subplot
% will open a new figure with the different conditions displayed together.
% Uses the command line function STD_PROPPLOT.
% "Plot scalp maps" - [button] Displays the scalp maps of cluster components.
% If applied to a cluster, scalp maps of the cluster components
% are plotted along with the cluster mean scalp map in one figure.
% If "All # cluster centroids" option is selected, all cluster scalp map
% means are plotted in the same figure. If applied to components, displays
% the scalp maps of the specified cluster components in separate figures.
% Uses the command line functions STD_TOPOPLOT.
% "Plot ERSPs" - [button] Displays the cluster component ERSPs.
% If applied to a cluster, component ERSPs are plotted in one figure
% (per condition) with the cluster mean ERSP. If "All # cluster centroids"
% option is selected, plots all average ERSPs of the clusters in one figure
% per condition. If applied to components, display the ERSP images of specified
% cluster components in separate figures, using one figure for all conditions.
% Uses the command line functions STD_ERSPPLOT.
% "Plot ITCs" - [button] Same as "Plot ERSPs" but with ITC.
% Uses the command line functions STD_ITCPLOT.
% "Plot dipoles" - [button] Displays the dipoles of the cluster components.
% If applied to a cluster, plots the cluster component dipoles (in blue)
% plus the average cluster dipole (in red). If "All # cluster centroids" option
% is selected, all cluster plots are displayed in one figure each cluster in
% a separate subplot. If applied to components, displays the ERSP images of the
% specified cluster. For specific components displays components dipole (in blue)
% plus the average cluster dipole (in Red) in separate figures.
% Uses the command line functions STD_DIPPLOT.
% "Plot spectra" - [button] Displays the cluster component spectra.
% If applied to a cluster, displays component spectra plus the average cluster
% spectrum in bold. For a specific cluster, displays the cluster component
% spectra plus the average cluster spectrum (in bold) in one figure per condition.
% If the "All # cluster centroids" option is selected, displays the average
% spectrum of all clusters in the same figure, with spectrum for different
% conditions (if any) plotted in different colors.
% If applied to components, displays the spectrum of specified cluster
% components in separate figures using one figure for all conditions.
% Uses the command line functions STD_SPECPLOT.
% "Plot ERPs" - [button] Same as "Plot spectra" but for ERPs.
% Uses the command line functions STD_ERPPLOT.
% "Plot ERPimage" - [button] Same as "Plot ERP" but for ERPimave.
% Uses the command line functions STD_ERPIMPLOT.
% "Create new cluster" - [button] Creates a new empty cluster.
% Opens a popup window in which a name for the new cluster can be entered.
% If no name is given the default name is 'Cls #', where '#' is the next
% available cluster number. For changes to take place, press the popup
% window 'OK' button, else press the 'Cancel' button. After the empty
% cluster is created, components can be moved into it using,
% 'Reassign selected component(s)' (see below). Uses the command line
% function STD_CREATECLUST.
% "Rename selected cluster" - [button] Renames a cluster using the selected (mnemonic) name.
% Opens a popup window in which a new name for the selected cluster can be
% entered. For changes to take place, press the popup window 'OK' button,
% else press the 'Cancel' button. Uses the command line function STD_RENAMECLUST.
% "Reject outlier components" - [button] rejects outlier components to an outlier cluster.
% Opens a popup window to specify the outlier threshold. Move outlier
% components that are more than x standard deviations devs from the
% cluster centroid to an outlier cluster. For changes to take place,
% press the popup window 'OK' button, else press the 'Cancel' button.
% Uses the command line function STD_REJECTOUTLIERS.
% "Merge clusters" - [button] Merges several clusters into one cluster.
% Opens a popup window in which the clusters to merge may be specified
% An optional name can be given to the merged cluster. If no name is given,
% the default name is 'Cls #', where '#' is the next available cluster number.
% For changes to take place, press the popup window 'OK' button, else press
% the 'Cancel' button. Uses the command line function STD_MERGECLUST.
% "Remove selected outlier component(s)" - [button] Moves selected component(s) to the
% outlier cluster. The components that will be moved are the ones selected
% in the "Select component(s) to plot" list box. Opens a popup window in which
% a list of the selected component(s) is presented. For changes to take place,
% press the popup window 'OK' button, else press the 'Cancel' button.
% Uses the command line function STD_MOVEOUTLIER.
% "Reassign selected component(s)" - [button] Moves selected component(s) from one cluster
% to another. The components that will reassign are the ones selected in the
% "Select component(s) to plot" list box. Opens a popup window in which
% a list of possible clusters to which to move the selected component(s) is
% presented. For changes to take place, press the popup window 'OK' button,
% else press the 'Cancel' button. Uses the command line function STD_MOVECOMP.
% "Save STUDY set to disk" - [check box] Saves the STUDY set structure modified according
% to specified user edits to the disk. If no file name is entered will
% overwrite the current STUDY set file.
%
% See also: POP_PRECLUST, POP_CLUST.
%
% Authors: Arnaud Delorme, Hilit Serby, Scott Makeig, SCCN/INC/UCSD, October 11, 2004
% Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, hilit@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [STUDY, com] = pop_clustedit(varargin)
icadefs;
if nargin < 2
help pop_clustedit;
return;
end
if ~ischar(varargin{1})
STUDY = varargin{1};
STUDY.etc.erpparams.topotime = NaN; % [] for channels and NaN for components
STUDY.etc.specparams.topofreq = NaN; % NaN -> GUI disabled
STUDY.etc.erspparams.topotime = NaN;
STUDY.etc.erspparams.topofreq = NaN;
STUDY.etc.erpimparams.topotime = NaN;
STUDY.etc.erpimparams.topotrial = NaN;
STUDY.tmphist = '';
ALLEEG = varargin{2};
clus_comps = 0; % the number of clustered components
if nargin > 2 && ~isempty(varargin{3}) % load specific clusters
cls = varargin{3}; %cluster numbers
N = length(cls); %number of clusters
% Check clusters are either from the same level (same parents) or are
% all leaf clusters.
% Check all input clusters have the same parent
sameparent = 1;
for k = 1: N
% Assess the number of clustered components
if (~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8)) && (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13))
clus_comps = clus_comps + length(STUDY.cluster(cls(k)).comps);
end
if k == 1
parent = STUDY.cluster(cls(k)).parent;
else
if isempty(parent) % if the first cluster was the parent cluster
parent = STUDY.cluster(cls(k)).parent;
end
% For any other case verify that all clusters have the same parents
if ~(sum(strcmp(STUDY.cluster(cls(k)).parent, parent)) == length(parent)) % different parent
if ~strcmp(STUDY.cluster(cls(k)).parent,'manual') && ~strcmp(parent, 'manual')
% if neither is an empty cluster (which was created manually)
sameparent = 0; % then the clusters have different parents
end
end
end
end
% If not same parent check if all leaf clusters
% ---------------------------------------------
if ~sameparent
for k = 1: N %check if all leaves
if ~isempty(STUDY.cluster(cls(k)).child)
error([ 'pop_clustedit(): All clusters must be from the same level \n' ...
' (i.e., have the same parents or not be child clusters)' ]);
end
end
end
% plotting text etc ...
% --------------------
num_cls = 0;
for k = 1:N
show_options{k+1} = [STUDY.cluster(cls(k)).name ' (' num2str(length(STUDY.cluster(cls(k)).comps)) ' ICs)'];
if (~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8)) && (~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8)) && ...
(~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13))
num_cls = num_cls + 1;
end
end
show_options{1} = ['All ' num2str(num_cls) ' cluster centroids'];
else % load leaf clusters
sameparent = 1;
cls = [];
for k = 2:length(STUDY.cluster)
if isempty(STUDY.cluster(k).child)
if isempty(cls)
parent = STUDY.cluster(k).parent;
elseif ~isempty(STUDY.cluster(k).parent) || ~isempty(parent) % if not both empty
% Check if all parents are the same
if ~(sum(strcmp(STUDY.cluster(k).parent, parent)) == length(parent)) % different parent
if ~strcmp(STUDY.cluster(k).parent,'manual') && ~strcmp(parent, 'manual')
sameparent = 0;
end
end
end
cls = [ cls k];
if ~strncmpi('Notclust',STUDY.cluster(k).name,8)
clus_comps = clus_comps + length(STUDY.cluster(k).comps);
end
end
end
% Plot clusters hierarchically
% ----------------------------
num_cls = 0;
cls = 1:length(STUDY.cluster);
N = length(cls); %number of clusters
show_options{1} = [STUDY.cluster(1).name ' (' num2str(length(STUDY.cluster(1).comps)) ' ICs)'];
cls(1) = 1;
count = 2;
for index1 = 1:length(STUDY.cluster(1).child)
indclust1 = strmatch( STUDY.cluster(1).child(index1), { STUDY.cluster.name }, 'exact');
show_options{count} = [' ' STUDY.cluster(indclust1).name ' (' num2str(length(STUDY.cluster(indclust1).comps)) ' ICs)'];
cls(count) = indclust1;
count = count+1;
for index2 = 1:length( STUDY.cluster(indclust1).child )
indclust2 = strmatch( STUDY.cluster(indclust1).child(index2), { STUDY.cluster.name }, 'exact');
show_options{count} = [' ' STUDY.cluster(indclust2).name ' (' num2str(length(STUDY.cluster(indclust2).comps)) ' ICs)'];
cls(count) = indclust2;
count = count+1;
for index3 = 1:length( STUDY.cluster(indclust2).child )
indclust3 = strmatch( STUDY.cluster(indclust2).child(index3), { STUDY.cluster.name }, 'exact');
show_options{count} = [' ' STUDY.cluster(indclust3).name ' (' num2str(length(STUDY.cluster(indclust3).comps)) ' ICs)'];
cls(count) = indclust3;
count = count+1;
end
end
end
show_options = { ['All cluster centroids'] show_options{:} };
end
all_comps = length(STUDY.cluster(1).comps);
show_clust_gcf = [ 'pop_clustedit(''showclust'',gcf);'];
show_clust = [ 'pop_clustedit(''showclust'',gcbf);'];
show_comps = [ 'pop_clustedit(''showcomplist'',gcbf);'];
plot_clus_maps = [ 'pop_clustedit(''topoplot'',gcbf); '];
plot_comp_maps = [ 'pop_clustedit(''plotcomptopo'',gcbf); '];
plot_clus_ersps = ['pop_clustedit(''erspplot'',gcbf); '];
plot_comp_ersps = ['pop_clustedit(''plotcompersp'',gcbf); '];
plot_clus_itcs = ['pop_clustedit(''itcplot'',gcbf); '];
plot_comp_itcs = ['pop_clustedit(''plotcompitc'',gcbf); '];
plot_clus_erpim = ['pop_clustedit(''erpimageplot'',gcbf); '];
plot_comp_erpim = ['pop_clustedit(''plotcomperpimage'',gcbf); '];
plot_clus_spectra = ['pop_clustedit(''specplot'',gcbf); '];
plot_comp_spectra = ['pop_clustedit(''plotcompspec'',gcbf); '];
plot_clus_erp = ['pop_clustedit(''erpplot'',gcbf); '];
plot_comp_erp = ['pop_clustedit(''plotcomperp'',gcbf); '];
plot_clus_dip = ['pop_clustedit(''dipplot'',gcbf); '];
plot_comp_dip = ['pop_clustedit(''plotcompdip'',gcbf); '];
plot_clus_sum = ['pop_clustedit(''plotsum'',gcbf); '];
plot_comp_sum = ['pop_clustedit(''plotcompsum'',gcbf); '];
rename_clust = ['pop_clustedit(''renameclust'',gcbf);'];
move_comp = ['pop_clustedit(''movecomp'',gcbf);'];
move_outlier = ['pop_clustedit(''moveoutlier'',gcbf);'];
create_clus = ['pop_clustedit(''createclust'',gcbf);'];
reject_outliers = ['pop_clustedit(''rejectoutliers'',gcbf);'];
merge_clusters = ['pop_clustedit(''mergeclusters'',gcbf);'];
dip_opt = ['pop_clustedit(''dip_opt'',gcbf);'];
erp_opt = ['pop_clustedit(''erp_opt'',gcbf);'];
spec_opt = ['pop_clustedit(''spec_opt'',gcbf);'];
ersp_opt = ['pop_clustedit(''ersp_opt'',gcbf);'];
erpim_opt = ['pop_clustedit(''erpim_opt'',gcbf);'];
stat_opt = ['pop_clustedit(''stat_opt'',gcbf);'];
saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ];
browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_clust()''); ' ...
'set(findobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ];
% Create default ERSP / ITC time/freq. parameters
% ----------------------------------------------
if isempty(ALLEEG)
error('STUDY contains no datasets');
end
% enable buttons
% --------------
filename = fullfile(STUDY.datasetinfo(1).filepath, STUDY.datasetinfo(1).subject);
if ~isempty(dir([filename '*.icaspec'])), spec_enable = 'on'; else spec_enable = 'off'; end
if ~isempty(dir([filename '*.icaerp'] )) , erp_enable = 'on'; else erp_enable = 'off'; end
if ~isempty(dir([filename '*.icaerpim'] )), erpim_enable = 'on'; else erpim_enable = 'off'; end
if ~isempty(dir([filename '*.icatimef'])) , ersp_enable = 'on'; else ersp_enable = 'off'; end
filename = fullfile( ALLEEG(1).filepath, ALLEEG(1).filename(1:end-4));
if ~isempty(dir([filename '*.icatopo'])), scalp_enable = 'on'; else scalp_enable = 'off'; end
if isfield(ALLEEG(1).dipfit, 'model'), dip_enable = 'on'; else dip_enable = 'off'; end
% userdata below
% --------------
fig_arg{1}{1} = ALLEEG;
fig_arg{1}{2} = STUDY;
fig_arg{1}{3} = cls;
fig_arg{2} = N;
str_name = sprintf('STUDY ''%s'' - ''%s'' component clusters', STUDY.name, STUDY.design(STUDY.currentdesign).name);
if length(str_name) > 80, str_name = [ str_name(1:80) '...''' ]; end
if length(cls) > 1, vallist = 1; else vallist = 2; end
geomline = [1 0.35 1];
geometry = { [0.8 3] [1] geomline geomline geomline geomline geomline geomline geomline geomline ...
geomline [1] geomline geomline }; %geomline };
geomvert = [ 1 .5 1 3 1 1 1 1 1 1 1 1 1 1 ]; %1];
uilist = { ...
{'style' 'text' 'string' 'Select design:' 'FontWeight' 'Bold' 'HorizontalAlignment' 'center'} ...
{'style' 'popupmenu' 'string' { STUDY.design.name } 'FontWeight' 'Bold' 'tag' 'design' 'value' STUDY.currentdesign } ...
{ } ...
{'style' 'text' 'string' 'Select cluster to plot' 'FontWeight' 'Bold' } {} ...
{'style' 'text' 'string' 'Select component to plot ' 'FontWeight' 'Bold'} ...
{'style' 'listbox' 'string' show_options 'value' vallist 'tag' 'clus_list' 'Callback' show_clust } ...
{'style' 'pushbutton' 'enable' 'on' 'string' 'STATS' 'Callback' stat_opt } ...
{'style' 'listbox' 'string' '' 'tag' 'clust_comp' 'max' 2 'min' 1 'callback' show_comps } ...
{'style' 'pushbutton' 'enable' scalp_enable 'string' 'Plot scalp maps' 'Callback' plot_clus_maps} {} ...
{'style' 'pushbutton' 'enable' scalp_enable 'string' 'Plot scalp map(s)' 'Callback' plot_comp_maps}...
{'style' 'pushbutton' 'enable' dip_enable 'string' 'Plot dipoles' 'Callback' plot_clus_dip} ...
{'style' 'pushbutton' 'enable' dip_enable 'string' 'Params' 'Callback' dip_opt } ...
{'style' 'pushbutton' 'enable' dip_enable 'string' 'Plot dipole(s)' 'Callback' plot_comp_dip}...
{'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERPs' 'Callback' plot_clus_erp} ...
{'style' 'pushbutton' 'enable' erp_enable 'string' 'Params' 'Callback' erp_opt } ...
{'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERP(s)' 'Callback' plot_comp_erp} ...
{'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_clus_spectra} ...
{'style' 'pushbutton' 'enable' spec_enable 'string' 'Params' 'Callback' spec_opt } ...
{'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_comp_spectra} ...
{'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage' 'Callback' plot_clus_erpim} ...
{'style' 'pushbutton' 'enable' erpim_enable 'string' 'Params' 'Callback' erpim_opt } ...
{'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage(s)' 'Callback' plot_comp_erpim} ...
{'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSPs' 'Callback' plot_clus_ersps} ...
{'vertexpand' 2.1 'style' 'pushbutton' 'enable' ersp_enable 'string' 'Params' 'Callback' ersp_opt } ...
{'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSP(s)' 'Callback' plot_comp_ersps} ...
{'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ITCs' 'Callback' plot_clus_itcs} { } ...
{'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ITC(s)' 'Callback' plot_comp_itcs} ...
... % {} {}... %{'style' 'pushbutton' 'string' 'Plot cluster properties' 'Callback' plot_clus_sum 'enable' 'off'} {} ...
... % {'style' 'pushbutton' 'string' 'Plot component properties' 'Callback' plot_comp_sum 'enable' 'on'} ... % nima, was off
{} ...
{'style' 'pushbutton' 'string' 'Create new cluster' 'Callback' create_clus} {} ...
{'style' 'pushbutton' 'string' 'Reassign selected component(s)' 'Callback' move_comp} ...
{'style' 'pushbutton' 'string' 'Rename selected cluster' 'Callback' rename_clust } {} ...
{'style' 'pushbutton' 'string' 'Remove selected outlier comps.' 'Callback' move_outlier} };
% {'style' 'pushbutton' 'string' 'Merge clusters' 'Callback' merge_clusters } {} ...
% {'style' 'pushbutton' 'string' 'Auto-reject outlier components' 'Callback' reject_outliers } };
% additional UI given on the command line
% ---------------------------------------
if nargin > 3
addui = varargin{4};
if ~isfield(addui, 'uilist')
error('Additional GUI definition (argument 4) requires the field "uilist"');
end
if ~isfield(addui, 'geometry')
addui.geometry = mat2cell(ones(1,length(addui.uilist)));
end
uilist = { uilist{:}, addui.uilist{:} };
geometry = { geometry{:} addui.geometry{:} };
geomvert = [ geomvert ones(1,length(addui.geometry)) ];
end
[out_param, userdat] = inputgui( 'geometry' , geometry, 'uilist', uilist, ...
'helpcom', 'pophelp(''pop_clustedit'')', ...
'title', 'View and edit current component clusters -- pop_clustedit()' , 'userdata', fig_arg, ...
'geomvert', geomvert, 'eval', show_clust_gcf );
if ~isempty(userdat)
ALLEEG = userdat{1}{1};
STUDY = userdat{1}{2};
end
% history
% -------
com = STUDY.tmphist;
STUDY = rmfield(STUDY, 'tmphist');
else
hdl = varargin{2}; %figure handle
userdat = get(varargin{2}, 'userdat');
ALLEEG = userdat{1}{1};
STUDY = userdat{1}{2};
cls = userdat{1}{3};
design = get(findobj('parent', hdl, 'tag', 'design') , 'value');
if ~std_checkdesign(STUDY, design)
return;
end
clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value');
comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value');
if clus == 1 && length(cls) == 1
warndlg2('No cluster', 'No cluster');
return;
end
try
switch varargin{1}
case {'plotcomptopo', 'plotcompersp','plotcompitc','plotcompspec', 'plotcomperp', 'plotcompdip', 'plotcomperpimage'}
plotting_option = varargin{1};
plotting_option = [ plotting_option(9:end) 'plot' ];
if (clus ~= 1 ) %specific cluster
if comp_ind(1) ~= 1 % check that not all comps in cluster are requested
subject = STUDY.datasetinfo( STUDY.cluster(cls(clus-1)).sets(1,comp_ind-1)).subject;
a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ', ''comps'', ' num2str(comp_ind-1) ', ''design'', ' int2str(design) ' );' ];
eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
else
a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ', ''design'', ' int2str(design) ', ''plotsubjects'', ''on'' );' ];
eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
end
else
comp_list = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String');
comp_name = comp_list(comp_ind);
for ci = 1:length(comp_name)
num_comps = 0;
tmp = strfind(comp_name{ci},'''');
clust_name = comp_name{ci}(tmp(1)+1:tmp(end)-1);
for k = 1:length(cls)
if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) && ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) && ...
(~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13))
if strcmpi(STUDY.cluster(cls(k)).name, clust_name)
cind = comp_ind(ci) - num_comps; % component index in the cluster
subject = STUDY.datasetinfo( STUDY.cluster(cls(k)).sets(1,cind)).subject;
a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(k)) ', ''design'', ' int2str(design) ', ''comps'',' num2str(cind) ' );' ];
eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
break;
else
num_comps = num_comps + length(STUDY.cluster(cls(k)).comps);
end
end
end
end
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
case {'topoplot', 'erspplot', 'itcplot', 'specplot', 'erpplot', 'dipplot', 'erpimageplot' }
plotting_option = varargin{1};
plotting_option = [ plotting_option(1:end-4) 'plot' ];
if (clus ~= 1 ) % specific cluster option
if ~isempty(STUDY.cluster(cls(clus-1)).comps)
a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ', ''design'', ' int2str(design) ');' ];
eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
end
else % all clusters
% All clusters does not include 'Notclust' 'ParentCluster' and 'Outliers' clusters.
tmpcls = [];
for k = 1:length(cls)
if ~strncmpi(STUDY.cluster(cls(k)).name,'Notclust',8) && ~strncmpi(STUDY.cluster(cls(k)).name,'Outliers',8) && ...
(~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) && ~isempty(STUDY.cluster(cls(k)).comps)
tmpcls = [ tmpcls cls(k)];
end
end
a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',[' num2str(tmpcls) '], ''design'', ' int2str(design) ');' ];
%if strcmpi(plotting_option, 'dipplot'), a = [a(1:end-2) ',''mode'', ''together'');' ]; end
eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
case 'dip_opt' % save the list of selected chaners
[STUDY, com] = pop_dipparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'erp_opt' % save the list of selected chaners
[STUDY, com] = pop_erpparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'stat_opt' % save the list of selected chaners
[STUDY, com] = pop_statparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'spec_opt' % save the list of selected channels
[STUDY, com] = pop_specparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'erpim_opt' % save the list of selected channels
[STUDY, com] = pop_erpimparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'ersp_opt' % save the list of selected channels
[STUDY, com] = pop_erspparams(STUDY);
if ~isempty(com)
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'showcomplist' % save the list of selected clusters
clust = get(findobj('parent', hdl, 'tag', 'clus_list') , 'value');
comp = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'value');
N = userdat{2};
count = 1;
if clust ~= 1 %specific cluster
STUDY.cluster(cls(clust-1)).selected = comp;
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update information (STUDY)
case 'showclust'
cind = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value');
N = userdat{2};
count = 1;
selected = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'value');
if cind ~= 1 %specific cluster
len = length(STUDY.cluster(cls(cind-1)).comps);
compid = cell(len+1,1);
compid{1} = 'All components';
% Convert from components numbering to the indexing form 'setXcomY'
for l = 1:len % go over the components of the cluster
if ~isnan(STUDY.cluster(cls(cind-1)).sets(1,l))
subject = STUDY.datasetinfo(STUDY.cluster(cls(cind-1)).sets(1,l)).subject;
compid{l+1} = [ subject ' IC' num2str(STUDY.cluster(cls(cind-1)).comps(1,l)) ];
end
end
if isfield(STUDY.cluster, 'selected')
if ~isempty(STUDY.cluster(cls(cind-1)).selected)
selected = min(STUDY.cluster(cls(cind-1)).selected, 1+length(STUDY.cluster(cls(cind-1)).comps(1,:)));
STUDY.cluster(cls(cind-1)).selected = selected;
end
end
else % All clusters accept 'Notclust' and 'Outliers'
count = 1;
for k = 1: length(cls)
if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) && ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) && ...
(~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13))
for l = 1: length(STUDY.cluster(cls(k)).comps)
if ~isnan(STUDY.cluster(cls(k)).sets(1,l))
subject = STUDY.datasetinfo(STUDY.cluster(cls(k)).sets(1,l)).subject; % This line chokes on NaNs. TF 2007.05.31
compid{count} = [ '''' STUDY.cluster(cls(k)).name ''' comp. ' ...
num2str(l) ' (' subject ' IC' num2str(STUDY.cluster(cls(k)).comps(l)) ')'];
count = count +1;
end
end
end
end
end
if selected > length(compid), selected = 1; end
set(findobj('parent', hdl, 'tag', 'clust_comp'), 'value', selected, 'String', compid);
case 'plotsum'
if clus ~= 1 % specific cluster option
[STUDY] = std_propplot(STUDY, ALLEEG, 'cluster', cls(clus-1));
% update Study history
a = ['STUDY = std_propplot(STUDY, ALLEEG, ''cluster'', ' num2str(cls(clus-1)) ' );' ];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
else % all clusters
% All clusters does not include 'Notclust' and 'Outliers' clusters.
tmpcls = [];
for k = 1:length(cls)
if ~strncmpi(STUDY.cluster(cls(k)).name,'Notclust',8) && ~strncmpi(STUDY.cluster(cls(k)).name,'Outliers',8) && ...
(~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13))
tmpcls = [tmpcls cls(k)];
end
end
[STUDY] = std_propplot(STUDY, ALLEEG, 'cluster', tmpcls);
% update Study history
a = ['STUDY = std_propplot(STUDY, ALLEEG, ''cluster'', [' num2str(tmpcls) '] );' ];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
end
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
case 'plotcompsum'
for ci = 1 : length(comp_ind)
% place holder for component properties % nima
end
case 'renameclust'
STUDY.saved = 'no';
clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String');
clus_num = get(findobj('parent', hdl, 'tag', 'clus_list'), 'Value') -1;
if clus_num == 0 % 'all clusters' option
return;
end
% Don't rename 'Notclust' and 'Outliers' clusters.
if strncmpi('Notclust',STUDY.cluster(cls(clus_num)).name,8) || strncmpi('Outliers',STUDY.cluster(cls(clus_num)).name,8) || ...
strncmpi('ParentCluster',STUDY.cluster(cls(clus_num)).name,13)
warndlg2('The ParentCluster, Outliers, and Notclust clusters cannot be renamed');
return;
end
old_name = STUDY.cluster(cls(clus_num)).name;
rename_param = inputgui( { [1] [1] [1]}, ...
{ {'style' 'text' 'string' ['Rename ' old_name] 'FontWeight' 'Bold'} {'style' 'edit' 'string' '' 'tag' 'clus_rename' } {} }, ...
'', 'Rename cluster - from pop_clustedit()' );
if ~isempty(rename_param) %if not canceled
new_name = rename_param{1};
STUDY = std_renameclust(STUDY, ALLEEG, cls(clus_num), new_name);
% update Study history
a = ['STUDY = std_renameclust(STUDY, ALLEEG, ' num2str(cls(clus_num)) ', ' STUDY.cluster(cls(clus_num)).name ');'];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
% Renaming cluster in list
new_name = [ STUDY.cluster(cls(clus_num)).name ' (' num2str(length(STUDY.cluster(cls(clus_num)).comps)) ' ICs)'];
clus_name_list{clus_num+1} = renameclust( clus_name_list{clus_num+1}, new_name);
% Renaming Outlier cluster if exist
outlier_clust = std_findoutlierclust(STUDY,cls(clus_num));
if outlier_clust ~= 0
new_outliername = [ STUDY.cluster(cls(outlier_clust)).name ' (' num2str(length(STUDY.cluster(cls(outlier_clust)).comps)) ' ICs)'];
clus_name_list{outlier_clust+1} = renameclust( clus_name_list{outlier_clust+1}, new_outliername);
end
set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list);
set(findobj('parent', hdl, 'tag', 'clus_rename'), 'String', '');
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat); %update STUDY
end
case 'movecomp'
STUDY.saved = 'no';
old_clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value') -1;
comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value');
if old_clus == 0 % 'all clusters' option
return;
end
% Don't reassign components of 'Notclust' or the 'ParentCluster'.
if strncmpi('ParentCluster',STUDY.cluster(cls(old_clus)).name,13)
warndlg2('Cannot reassign components of ''ParentCluster''.');
return;
end
old_name = STUDY.cluster(cls(old_clus)).name;
ncomp = length(comp_ind); % number of selected components
optionalcls =[];
for k = 1:length(cls)
if (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) && (k~= old_clus)
optionalcls = [optionalcls cls(k)];
end
end
reassign_param = inputgui( { [1] [1] [1]}, ...
{ {'style' 'text' 'string' strvcat(['Reassign ' fastif(ncomp >1, [num2str(length(comp_ind)) ' currently selected components'], ...
'currently selected component') ], ...
[' from ' old_name ' to the cluster selected below']) 'FontWeight' 'Bold'} ...
{'style' 'listbox' 'string' {STUDY.cluster(optionalcls).name} 'tag' 'new_clus'} {} }, ...
'', 'Reassign cluster - from pop_clustedit()' ,[] , 'normal', [2 3 1] );
if ~isempty(reassign_param) %if not canceled
new_clus = reassign_param{1};
comp_to_disp = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String');
if strcmp(comp_to_disp{comp_ind(1)},'All components')
warndlg2('Cannot move all the components of the cluster - abort move components', 'Aborting move components');
return;
end
STUDY = std_movecomp(STUDY, ALLEEG, cls(old_clus), optionalcls(new_clus), comp_ind - 1);
% update Study history
a = ['STUDY = std_movecomp(STUDY, ALLEEG, ' num2str(cls(old_clus)) ', ' num2str(optionalcls(new_clus)) ', [' num2str(comp_ind - 1) ']);'];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
newind = find(cls == optionalcls(new_clus));
% update GUI
% ----------
clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String');
newname = [STUDY.cluster(optionalcls(new_clus)).name ' (' num2str(length(STUDY.cluster(optionalcls(new_clus)).comps)) ' ICs)'];
clus_name_list{newind+1} = renameclust( clus_name_list{newind+1}, newname);
newname = [STUDY.cluster(cls(old_clus)).name ' (' num2str(length(STUDY.cluster(cls(old_clus)).comps)) ' ICs)'];
clus_name_list{old_clus+1} = renameclust( clus_name_list{old_clus+1}, newname);
set( findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list);
STUDY.cache = [];
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
pop_clustedit('showclust',hdl);
end
case 'moveoutlier'
STUDY.saved = 'no';
old_clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value') -1;
comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value');
if ~isempty(find(comp_ind ==1))
warndlg2('Cannot remove all the cluster components');
return;
end
if old_clus == 0 % 'all clusters' option
return;
end
if strncmpi('Notclust',STUDY.cluster(cls(old_clus)).name,8) || strncmpi('ParentCluster',STUDY.cluster(cls(old_clus)).name,13) % There are no outliers to 'Notclust'
warndlg2('Cannot reassign components of ''Notclust'' or ''ParentCluster''.');
return;
end
comp_list = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String');
ncomp = length(comp_ind);
old_name = STUDY.cluster(cls(old_clus)).name;
if strncmpi('Outliers',STUDY.cluster(cls(old_clus)).name,8) % There are no outliers of 'Outliers'
warndlg2('Cannot use ''Outliers'' clusters for this option.');
return;
end
reassign_param = inputgui( { [1] [1] [1]}, ...
{ {'style' 'text' 'string' ['Remove ' fastif(ncomp >1, [num2str(length(comp_ind)) ' currently selected components below '], 'currently selected component below ') ...
'from ' old_name ' to its outlier cluster?'] 'FontWeight' 'Bold'} ...
{'style' 'listbox' 'string' {comp_list{comp_ind}} 'tag' 'new_clus'} {} }, ...
'', 'Remove outliers - from pop_clustedit()' ,[] , 'normal', [1 3 1] );
if ~isempty(reassign_param) %if not canceled
STUDY = std_moveoutlier(STUDY, ALLEEG, cls(old_clus), comp_ind - 1);
clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String');
outlier_clust = std_findoutlierclust(STUDY,cls(old_clus)); %find the outlier cluster for this cluster
oind = find(cls == outlier_clust); % the outlier clust index (if already exist) in the cluster list GUI
if ~isempty(oind) % the outlier clust is already presented in the cluster list GUI
newname = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)'];
clus_name_list{oind+1} = renameclust( clus_name_list{oind+1}, newname);
elseif outlier_clust == length(STUDY.cluster) % update the list with the Outlier cluster (if didn't exist before)
clus_name_list{end+1} = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)'];
userdat{2} = userdat{2} + 1; % update N, number of clusters in edit window
cls(end +1) = length(STUDY.cluster); % update the GUI clusters list with the outlier cluster
userdat{1}{3} = cls; % update cls, the cluster indices in edit window
end
newname = [STUDY.cluster(cls(old_clus)).name ' (' num2str(length(STUDY.cluster(cls(old_clus)).comps)) ' ICs)'];
clus_name_list{old_clus+1} = renameclust(clus_name_list{old_clus+1}, newname);
set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list);
% update Study history
a = ['STUDY = std_moveoutlier(STUDY, ALLEEG, ' num2str(cls(old_clus)) ', [' num2str(comp_ind - 1) ']);'];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
STUDY.cache = [];
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
pop_clustedit('showclust',hdl);
end
case 'rejectoutliers'
STUDY.saved = 'no';
clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'Value') -1;
if clus
std_name = STUDY.cluster(cls(clus)).name;
% Cannot reject outliers from 'Notclust', 'ParentCluster' and 'Outlier' clusters
if strncmpi('Notclust',std_name,8) || strncmpi('ParentCluster', std_name,13) || ...
strncmpi('Outliers',std_name,8)
warndlg2('Cannot reject outliers of ''Notclust'' or ''Outliers'' or ''ParentCluster'' clusters.');
return;
end
clusters = cls(clus);
else
std_name = 'All clusters';
clusters = [];
for k = 1:length(cls)
if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) && ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) && ...
~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)
clusters = [ clusters cls(k)];
end
end
end
reject_param = inputgui( { [1] [1] [4 1 2] [1]}, ...
{ {'style' 'text' 'string' ['Reject "' std_name '" outliers ' ] 'FontWeight' 'Bold'} {} ...
{'style' 'text' 'string' 'Move outlier components that are more than'} {'style' 'edit' 'string' '3' 'tag' 'outliers_std' } ...
{'style' 'text' 'string' 'standard deviations' } ...
{'style' 'text' 'string' [ 'from the "' std_name '" centroid to an outlier cluster.']} }, ...
'', 'Reject outliers - from pop_clustedit()' );
if ~isempty(reject_param) %if not canceled
ostd = reject_param{1}; % the requested outlier std
[STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, str2num(ostd));
% update Study history
a = ['STUDY = std_rejectoutliers(STUDY, ALLEEG, [ ' num2str(clusters) ' ], ' ostd ');'];
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String');
for k = 1:length(clusters)
outlier_clust = std_findoutlierclust(STUDY,clusters(k)); %find the outlier cluster for this cluster
oind = find(cls == outlier_clust); % the outlier clust index (if already exist) in the cluster list GUI
if ~isempty(oind) % the outlier clust is already presented in the cluster list GUI
newname = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)'];
clus_name_list{oind+1} = renameclust( clus_name_list{oind+1}, newname);
else % update the list with the outlier cluster
clus_name_list{end+1} = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)'];
userdat{2} = userdat{2} + 1; % update N, number of clusters in edit window
cls(end +1) = outlier_clust; % update the GUI clusters list with the outlier cluster
userdat{1}{3} = cls; % update cls, the cluster indices in edit window
end
clsind = find(cls == clusters(k));
newname = [STUDY.cluster(clusters(k)).name ' (' num2str(length(STUDY.cluster(clusters(k)).comps)) ' ICs)'];
clus_name_list{clsind+1} = renameclust( clus_name_list{clsind+1}, newname);
set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list);
end
% If outlier cluster doesn't exist in the GUI window add it
STUDY.cache = [];
userdat{1}{2} = STUDY;
set(hdl, 'userdat',userdat);
pop_clustedit('showclust',hdl);
end
case 'createclust'
STUDY.saved = 'no';
create_param = inputgui( { [1] [1 1] [1]}, ...
{ {'style' 'text' 'string' 'Create new empty cluster' 'FontWeight' 'Bold'} ...
{'style' 'text' 'string' 'Enter cluster name:'} {'style' 'edit' 'string' '' } {} }, ...
'', 'Create new empty cluster - from pop_clustedit()' );
if ~isempty(create_param) %if not canceled
clus_name = create_param{1}; % the name of the new cluster
[STUDY] = std_createclust(STUDY, ALLEEG, 'name', clus_name);
% Update cluster list
clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String');
clus_name_list{end+1} = [STUDY.cluster(end).name ' (0 ICs)']; %update the cluster list with the new cluster
% update the first option on the GUI list : 'All 10 cluster centroids'
% with the new number of cluster centroids
ti = strfind(clus_name_list{1},'cluster'); %get the number of clusters centroid
cent = num2str(str2num(clus_name_list{1}(5:ti-2))+1); % new number of centroids
clus_name_list{1} = [clus_name_list{1}(1:4) cent clus_name_list{1}(ti-1:end)]; %update list
set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list);
% update Study history
if isempty(clus_name)
a = ['STUDY = std_createclust(STUDY, ALLEEG);'];
else
a = ['STUDY = std_createclust(STUDY, ALLEEG, ''name'', ' clus_name ');'];
end
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
STUDY.cache = [];
userdat{1}{2} = STUDY;
userdat{2} = userdat{2} + 1; % update N, the number of cluster options in edit window
cls(end +1) = length(STUDY.cluster); % update the GUI clusters list with the new cluster
userdat{1}{3} = cls; % update cls, the cluster indices in edit window
set(hdl, 'userdat',userdat); %update STUDY, cls and N
end
case 'mergeclusters'
STUDY.saved = 'no';
clus_names = get(findobj('parent', hdl, 'tag', 'clus_list'), 'string') ;
optionalcls =[];
for k = 2:length(clus_names)
if (~strncmpi('Notclust',clus_names{k},8)) && (~strncmpi('Outliers',clus_names{k},8)) && ...
(~strncmpi('ParentCluster',clus_names{k},13))
optionalcls = [optionalcls k];
end
end
reassign_param = inputgui( { [1] [1] [1] [2 1] [1]}, ...
{ {'style' 'text' 'string' 'Select clusters to Merge' 'FontWeight' 'Bold'} ...
{'style' 'listbox' 'string' clus_names(optionalcls) 'tag' 'new_clus' 'max' 3 'min' 1} {} ...
{'style' 'text' 'string' 'Optional, enter a name for the merged cluster:' 'FontWeight' 'Bold'} ...
{'style' 'edit' 'string' ''} {} }, ...
'', 'Merge clusters - from pop_clustedit()' ,[] , 'normal', [1 3 1 1 1] );
if ~isempty(reassign_param)
std_mrg = cls(optionalcls(reassign_param{1})-1);
name = reassign_param{2};
allleaves = 1;
N = userdat{2};
for k = 1: N %check if all leaves
if ~isempty(STUDY.cluster(cls(k)).child)
allleaves = 0;
end
end
[STUDY] = std_mergeclust(STUDY, ALLEEG, std_mrg, name);
%
% update Study history
%
if isempty(name)
a = ['STUDY = std_mergeclust(STUDY, ALLEEG, [' num2str(std_mrg) ']);'];
else
a = ['STUDY = std_mergeclust(STUDY, ALLEEG, [' num2str(std_mrg) '], ' name ');'];
end
STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a);
STUDY.cache = [];
userdat{1}{2} = STUDY;
%
% Replace the merged clusters with the one new merged cluster
% in the GUI if all clusters are leaves
%
if allleaves
%
% Update cluster list
%
clus_names{end+1} = [STUDY.cluster(end).name ' (' num2str(length(STUDY.cluster(end).comps)) ' ICs)'];
%
% update the cluster list with the new cluster
%
clus_names([optionalcls(reassign_param{1})]) = [];
cls = setdiff_bc(cls, std_mrg); % remove from the GUI clusters list the merged clusters
cls(end+1) = length(STUDY.cluster); % update the GUI clusters list with the new cluster
N = length(cls);
%
% update the first option on the GUI list : 'All 10 cluster centroids'
% with the new number of cluster centroids
%
ti = strfind(clus_names{1},'cluster'); %get the number of clusters centroid
cent = num2str(str2num(clus_names{1}(5:ti-2))+1- length(std_mrg)); % new number of centroids
clus_names{1} = [clus_names{1}(1:4) cent clus_names{1}(ti-1:end)]; %update list
set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_names);
%
% update Study history
%
userdat{2} = N; % update N, the number of cluster options in edit window
userdat{1}{3} = cls; % update cls, the cluster indices in edit window
end
set(hdl, 'userdat',userdat); %update information (STUDY)
pop_clustedit('showclust',hdl);
end
end
catch
eeglab_error;
end
end
function newname = renameclust(oldname, newname)
tmpname = deblank(oldname(end:-1:1));
strpos = strfind(oldname, tmpname(end:-1:1));
newname = [ oldname(1:strpos-1) newname ];