[422372]: / functions / statistics / anova2rm_cell.m

Download this file

207 lines (195 with data), 7.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
% ANOVA2RM_CELL - compute F-values in cell array using repeated measure
% ANOVA.
%
% Usage:
% >> [FC FR FI dfc dfr dfi] = anova2rm_cell( data );
%
% Inputs:
% data = data consisting of PAIRED arrays to be compared. The last
% dimension of the data array is used to compute ANOVA.
% Outputs:
% FC - F-value for columns.
% FR - F-value for rows.
% FI - F-value for interaction.
% dfc - degree of freedom for columns.
% dfr - degree of freedom for rows.
% dfi - degree of freedom for interaction.
%
% Note: this function is inspired from rm_anova available at
% http://www.mathworks.se/matlabcentral/fileexchange/6874-two-way-rep
% eated-measures-anova
% It allows for fast computation of about 20 thousands ANOVA per
% second. It is different from anova2_cell which mimics the ANOVA
% function from the Matlab statistical toolbox. This function
% computes true repeated measure ANOVA.
%
% Example:
% a = { rand(1,10) rand(1,10) rand(1,10); rand(1,10) rand(1,10) rand(1,10) }
% [FC FR FI dfc dfr dfi] = anova2rm_cell(a)
% signifC = 1-fcdf(FC, dfc(1), dfc(2))
% signifR = 1-fcdf(FR, dfr(1), dfr(2))
% signifI = 1-fcdf(FI, dfi(1), dfi(2))
%
% % for comparison
% z = zeros(10,1); o = ones(10,1); t = ones(10,1)*2;
% rm_anova2( [ a{1,1}';a{1,2}';a{1,3}';a{2,1}';a{2,2}';a{2,3}' ], ...
% repmat([1:10]', [6 1]), [o;o;o;z;z;z], [z;o;t;z;o;t], {'a','b'})
%
% c = { rand(200,400,10) rand(200,400,10); ...
% rand(200,400,10) rand(200,400,10)};
% [FC FR FI dfc dfr dfi] = anova2rm_cell(c) % computes 200x400 ANOVAs
%
% Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2010
% Copyright (C) Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [fA fB fAB dfApair dfBpair dfABpair] = anova2rm_cell(data)
% compute all means and all std
% -----------------------------
a = size(data,1);
b = size(data,2);
nd = myndims( data{1} );
n = size( data{1} ,nd);
% only for paired stats
% ---------------------
if nd == 1
AB = zeros(a,b,'single');
AS = zeros(a,n,'single');
BS = zeros(b,n,'single');
sq = single(0);
for ind1 = 1:a
for ind2 = 1:b
AB(ind1,ind2) = sum(data{ind1,ind2});
AS(ind1,:) = AS(ind1,:) + data{ind1,ind2}';
BS(ind2,:) = BS(ind2,:) + data{ind1,ind2}';
sq = sq + sum(data{ind1,ind2}.^2);
end
end
dimA = 2;
dimB = 1;
elseif nd == 2
AB = zeros(size(data{1},1),a,b,'single');
AS = zeros(size(data{1},1),a,n,'single');
BS = zeros(size(data{1},1),b,n,'single');
sq = zeros(size(data{1},1),1,'single');
for ind1 = 1:a
for ind2 = 1:b
AB(:,ind1,ind2) = sum(data{ind1,ind2},nd);
AS(:,ind1,:) = AS(:,ind1,:) + reshape(data{ind1,ind2},size(data{1},1),1,n);
BS(:,ind2,:) = BS(:,ind2,:) + reshape(data{ind1,ind2},size(data{1},1),1,n);
sq = sq + sum(data{ind1,ind2}.^2,nd);
end
end
dimA = 3;
dimB = 2;
elseif nd == 3
AB = zeros(size(data{1},1),size(data{1},2),a,b,'single');
AS = zeros(size(data{1},1),size(data{1},2),a,n,'single');
BS = zeros(size(data{1},1),size(data{1},2),b,n,'single');
sq = zeros(size(data{1},1),size(data{1},2),'single');
for ind1 = 1:a
for ind2 = 1:b
AB(:,:,ind1,ind2) = sum(data{ind1,ind2},nd);
AS(:,:,ind1,:) = AS(:,:,ind1,:) + reshape(data{ind1,ind2},size(data{1},1),size(data{1},2),1,n);
BS(:,:,ind2,:) = BS(:,:,ind2,:) + reshape(data{ind1,ind2},size(data{1},1),size(data{1},2),1,n);
sq = sq + sum(data{ind1,ind2}.^2,nd);
end
end
dimA = 4;
dimB = 3;
elseif nd == 4
AB = zeros(size(data{1},1),size(data{1},2),size(data{1},3),a,b,'single');
AS = zeros(size(data{1},1),size(data{1},2),size(data{1},3),a,n,'single');
BS = zeros(size(data{1},1),size(data{1},2),size(data{1},3),b,n,'single');
sq = zeros(size(data{1},1),size(data{1},2),size(data{1},3),'single');
for ind1 = 1:a
for ind2 = 1:b
AB(:,:,:,ind1,ind2) = sum(data{ind1,ind2},nd);
AS(:,:,:,ind1,:) = AS(:,:,:,ind1,:) + reshape(data{ind1,ind2},size(data{1},1),size(data{1},2),size(data{1},3),1,n);
BS(:,:,:,ind2,:) = BS(:,:,:,ind2,:) + reshape(data{ind1,ind2},size(data{1},1),size(data{1},2),size(data{1},3),1,n);
sq = sq + sum(data{ind1,ind2}.^2,nd);
end
end
dimA = 5;
dimB = 4;
end
A = sum(AB,dimA); % sum across columns, so result is ax1 column vector
B = sum(AB,dimB); % sum across rows, so result is 1xb row vector
S = sum(AS,dimB); % sum across columns, so result is 1xs row vector
T = sum(sum(A,dimB),dimA); % could sum either A or B or S, choice is arbitrary
% degrees of freedom
dfA = a-1;
dfB = b-1;
dfAB = (a-1)*(b-1);
dfS = n-1;
dfAS = (a-1)*(n-1);
dfBS = (b-1)*(n-1);
dfABS = (a-1)*(b-1)*(n-1);
% bracket terms (expected value)
expA = sum(A.^2,dimB)./(b*n);
expB = sum(B.^2,dimA)./(a*n);
expAB = sum(sum(AB.^2,dimA),dimB)./n;
expS = sum(S.^2,dimA)./(a*b);
expAS = sum(sum(AS.^2,dimB),dimA)./b;
expBS = sum(sum(BS.^2,dimB),dimA)./a;
expY = sq; %sum(Y.^2);
expT = T.^2 / (a*b*n);
% sums of squares
ssA = expA - expT;
ssB = expB - expT;
ssAB = expAB - expA - expB + expT;
ssS = expS - expT;
ssAS = expAS - expA - expS + expT;
ssBS = expBS - expB - expS + expT;
ssABS = expY - expAB - expAS - expBS + expA + expB + expS - expT;
ssTot = expY - expT;
% mean squares
msA = ssA / dfA;
msB = ssB / dfB;
msAB = ssAB / dfAB;
msS = ssS / dfS;
msAS = ssAS / dfAS;
msBS = ssBS / dfBS;
msABS = ssABS / dfABS;
% f statistic
fA = msA ./ msAS;
fB = msB ./ msBS;
fAB = msAB ./ msABS;
dfApair = [dfA dfAS];
dfBpair = [dfB dfBS];
dfABpair = [dfAB dfABS];
function val = myndims(a)
if ndims(a) > 2
val = ndims(a);
else
if size(a,1) == 1,
val = 2;
elseif size(a,2) == 1,
val = 1;
else
val = 2;
end
end