% REJKURT - calculation of kutosis of a 1D, 2D or 3D array and
% rejection of outliers values of the input data array
% using the discrete kutosis of the values in that dimension.
%
% Usage:
% >> [kurtosis rej] = rejkurt( signal, threshold, kurtosis, normalize);
%
% Inputs:
% signal - one dimensional column vector of data values, two
% dimensional column vector of values of size
% sweeps x frames or three dimensional array of size
% component x sweeps x frames. If three dimensional,
% all components are treated independently.
% threshold - Absolute threshold. If normalization is used then the
% threshold is expressed in standard deviation of the
% mean. 0 means no threshold.
% kurtosis - pre-computed kurtosis (only perform thresholding). Default
% is the empty array [].
% normalize - 0 = do not not normalize kurtosis. 1 = normalize kurtosis.
% 2 is 20% trimming (10% low and 10% high) kurtosis before
% normalizing. Default is 0.
%
% Outputs:
% kurtosis - normalized joint probability of the single trials
% (same size as signal without the last dimension)
% rej - rejected matrix (0 and 1, size: 1 x sweeps)
%
% Remarks:
% The exact values of kurtosis depend on the size of a time
% step and thus cannot be considered as absolute.
% This function uses the kurtosis function from the statistival
% matlab toolbox. If the statistical toolbox is not installed,
% it uses the 'kurt' function of the ICA/EEG toolbox.
%
% See also: KURT, KURTOSIS
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [kurto, rej] = rejkurt( signal, threshold, oldkurtosis, normalize);
if nargin < 1
help rejkurt;
return;
end;
if nargin < 2
threshold = 0;
end;
if nargin < 4
normalize = 0;
end;
if nargin < 3
oldkurtosis = [];
end;
if size(signal,2) == 1 % transpose if necessary
signal = signal';
end
nbchan = size(signal,1);
pnts = size(signal,2);
sweeps = size(signal,3);
kurto = zeros(nbchan,sweeps);
if ~isempty( oldkurtosis ) % speed up the computation
kurto = oldkurtosis;
else
for rc = 1:nbchan
% compute all kurtosis
% --------------------
for index=1:sweeps
try
kurto(rc, index) = kurtosis(signal(rc,:,index));
catch
kurto(rc, index) = kurt(signal(rc,:,index));
end;
end
end
% normalize the last dimension
% ----------------------------
if normalize
tmpkurt = kurto;
if normalize == 2,
tmpkurt = sort(tmpkurt);
minind = max(round(length(tmpkurt)*0.1),1);
maxind = round(length(tmpkurt)-round(length(tmpkurt)*0.1));
if size(tmpkurt,2) == 1
tmpkurt = tmpkurt(minind:maxind);
else tmpkurt = tmpkurt(:,minind:maxind);
end
end
switch ndims( signal )
case 2, kurto = (kurto-mean(tmpkurt)) / std(tmpkurt);
case 3, kurto = (kurto-mean(tmpkurt,2)*ones(1,size(kurto,2)))./ ...
(std(tmpkurt,0,2)*ones(1,size(kurto,2)));
end
end
end
% reject
% ------
if threshold(1) ~= 0
if length(threshold) > 1
rej = (threshold(1) > kurto) | (kurto > threshold(2));
else
rej = abs(kurto) > threshold;
end
else
rej = zeros(size(kurto));
end;
return;