[422372]: / functions / sigprocfunc / rejkurt.m

Download this file

138 lines (128 with data), 4.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
% REJKURT - calculation of kutosis of a 1D, 2D or 3D array and
% rejection of outliers values of the input data array
% using the discrete kutosis of the values in that dimension.
%
% Usage:
% >> [kurtosis rej] = rejkurt( signal, threshold, kurtosis, normalize);
%
% Inputs:
% signal - one dimensional column vector of data values, two
% dimensional column vector of values of size
% sweeps x frames or three dimensional array of size
% component x sweeps x frames. If three dimensional,
% all components are treated independently.
% threshold - Absolute threshold. If normalization is used then the
% threshold is expressed in standard deviation of the
% mean. 0 means no threshold.
% kurtosis - pre-computed kurtosis (only perform thresholding). Default
% is the empty array [].
% normalize - 0 = do not not normalize kurtosis. 1 = normalize kurtosis.
% 2 is 20% trimming (10% low and 10% high) kurtosis before
% normalizing. Default is 0.
%
% Outputs:
% kurtosis - normalized joint probability of the single trials
% (same size as signal without the last dimension)
% rej - rejected matrix (0 and 1, size: 1 x sweeps)
%
% Remarks:
% The exact values of kurtosis depend on the size of a time
% step and thus cannot be considered as absolute.
% This function uses the kurtosis function from the statistival
% matlab toolbox. If the statistical toolbox is not installed,
% it uses the 'kurt' function of the ICA/EEG toolbox.
%
% See also: KURT, KURTOSIS
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [kurto, rej] = rejkurt( signal, threshold, oldkurtosis, normalize);
if nargin < 1
help rejkurt;
return;
end;
if nargin < 2
threshold = 0;
end;
if nargin < 4
normalize = 0;
end;
if nargin < 3
oldkurtosis = [];
end;
if size(signal,2) == 1 % transpose if necessary
signal = signal';
end
nbchan = size(signal,1);
pnts = size(signal,2);
sweeps = size(signal,3);
kurto = zeros(nbchan,sweeps);
if ~isempty( oldkurtosis ) % speed up the computation
kurto = oldkurtosis;
else
for rc = 1:nbchan
% compute all kurtosis
% --------------------
for index=1:sweeps
try
kurto(rc, index) = kurtosis(signal(rc,:,index));
catch
kurto(rc, index) = kurt(signal(rc,:,index));
end;
end
end
% normalize the last dimension
% ----------------------------
if normalize
tmpkurt = kurto;
if normalize == 2,
tmpkurt = sort(tmpkurt);
minind = max(round(length(tmpkurt)*0.1),1);
maxind = round(length(tmpkurt)-round(length(tmpkurt)*0.1));
if size(tmpkurt,2) == 1
tmpkurt = tmpkurt(minind:maxind);
else tmpkurt = tmpkurt(:,minind:maxind);
end
end
switch ndims( signal )
case 2, kurto = (kurto-mean(tmpkurt)) / std(tmpkurt);
case 3, kurto = (kurto-mean(tmpkurt,2)*ones(1,size(kurto,2)))./ ...
(std(tmpkurt,0,2)*ones(1,size(kurto,2)));
end
end
end
% reject
% ------
if threshold(1) ~= 0
if length(threshold) > 1
rej = (threshold(1) > kurto) | (kurto > threshold(2));
else
rej = abs(kurto) > threshold;
end
else
rej = zeros(size(kurto));
end;
return;