% ENTROPY_REJ - calculation of entropy of a 1D, 2D or 3D array and
% rejection of odd last dimension values of the input data array
% using the discrete entropy of the values in that dimension
% (and using the probability distribution of all columns).
%
% Usage:
% >> [entropy rej] = entropy_rej( signal, threshold, entropy, normalize, discret);
%
% Inputs:
% signal - one dimensional column vector of data values, two
% dimensional column vector of values of size
% sweeps x frames or three dimensional array of size
% component x sweeps x frames. If three dimensional,
% all components are treated independently.
% threshold - Absolute threshold. If normalization is used then the
% threshold is expressed in standard deviation of the
% mean. 0 means no threshold.
% entropy - pre-computed entropy_rej (only perform thresholding). Default
% is the empty array [].
% normalize - 0 = do not not normalize entropy. 1 = normalize entropy.
% Default is 0.
% discret - discretization variable for calculation of the
% discrete probability density. Default is 1000 points.
%
% Outputs:
% entropy - entropy (normalized or not) of the single data trials
% (same size as signal without the last dimension)
% rej - rejection matrix (0 and 1, size of number of rows)
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: REALPROBA
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [ent, rej] = entropy_rej( signal, threshold, oldentropy_rej, normalize, discret );
if nargin < 1
help entropy_rej;
return;
end;
if nargin < 2
threshold = 0;
end;
if nargin < 3
oldentropy_rej = [];
end;
if nargin < 4
normalize = 0;
end;
if nargin < 5
discret = 1000;
end;
% threshold = erfinv(threshold);
if size(signal,2) == 1 % transpose if necessary
signal = signal';
end
[nbchan pnts sweeps] = size(signal);
ent = zeros(nbchan,sweeps);
if ~isempty( oldentropy_rej ) % speed up the computation
ent = oldentropy_rej;
else
for rc = 1:nbchan
% COMPUTE THE DENSITY FUNCTION
% ----------------------------
[ dataProba sortbox ] = realproba( signal(rc, :), discret );
% compute all entropy
% -------------------
for index=1:sweeps
datatmp = dataProba((index-1)*pnts+1:index*pnts);
ent(rc, index) = - sum( datatmp .* log( datatmp ) );
end
end
% normalize the last dimension
% ----------------------------
if normalize
switch ndims( signal )
case 2, ent = (ent-mean(ent)) / std(ent);
case 3, ent = (ent-mean(ent,2)*ones(1,size(ent,2)))./ ...
(std(ent,0,2)*ones(1,size(ent,2)));
end
end
end
% reject
% ------
if threshold ~= 0
rej = abs(ent) > threshold;
else
rej = zeros(size(ent));
end;
return;