[422372]: / functions / popfunc / pop_runica.m

Download this file

694 lines (663 with data), 33.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
% POP_RUNICA - Run an ICA decomposition of an EEG dataset using RUNICA,
% BINICA, or another ICA or other linear decomposition.
% Usage:
% >> OUT_EEG = pop_runica( EEG ); % pops-up a data entry window
% >> OUT_EEG = pop_runica( EEG, 'key', 'val' ); % no pop_up
%
% Graphic interface:
% "ICA algorithm to use" - [edit box] The ICA algorithm to use for
% ICA decomposition. Command line equivalent: 'icatype'
% "Commandline options" - [edit box] Command line options to forward
% to the ICA algorithm. Command line equivalent: 'options'
% Inputs:
% EEG - input EEG dataset or array of datasets
%
% Optional inputs:
% 'icatype' - ['runica'|'binica'|'jader'|'fastica'] ICA algorithm
% to use for the ICA decomposition. The nature of any
% differences in the results of these algorithms have
% not been well characterized. {default: BINICA, if
% found, else RUNICA}
% 'dataset' - [integer array] dataset index or indices.
% 'chanind' - [integer array or cell array] subset of channel indices
% for running the ICA decomposition. Alternatively, you may
% also enter channel types here in a cell array.
% 'concatenate' - ['on'|'off'] 'on' concatenate all input datasets
% (assuming there are several). 'off' run ICA independently
% on each dataset. Default is 'off'.
% 'concatcond' - ['on'|'off'] 'on' concatenate conditions for input datasets
% of the same sessions and the same subject. Default is 'off'.
% 'reorder' - ['on'|'off'] re-order components by variance if that's not
% already the case. Default is 'on'.
% 'key','val' - ICA algorithm options (see ICA routine help messages).
%
% Adding a new algorithm:
% Add the algorithm to the list of algorithms line 366 to 466, for example
%
% case 'myalgo', [EEG.icaweights] = myalgo( tmpdata, g.options{:} );
%
% where "myalgo" is the name of your algorithm (and Matlab function).
% tmpdata is the 2-D array containing the EEG data (channels x points) and
% g.options{} contains custom options for your algorithm (there is no
% predetermined format for these options). The output EEG.icaweights is the
% mixing matrix (or inverse of the unmixing matrix).
%
% Note:
% 1) Infomax (runica, binica) is the ICA algorithm we use most. It is based
% on Tony Bell's infomax algorithm as implemented for automated use by
% Scott Makeig et al. using the natural gradient of Amari et al. It can
% also extract sub-Gaussian sources using the (recommended) 'extended' option
% of Lee and Girolami. Function RUNICA is the all-Matlab version; function
% BINICA calls the (1.5x faster) binary version (a separate download)
% translated into C from RUNICA by Sigurd Enghoff.
% 2) JADER calls the JADE algorithm of Jean-Francois Cardoso. This is
% included in the EEGLAB toolbox by his permission. See >> help jader
% 3) To run FASTICA, download the fastICA toolbox from its website,
% http://www.cis.hut.fi/projects/ica/fastica/, and make it available
% in your Matlab path. According to its authors, default parameters
% are not optimal: Try args 'approach', 'sym' to estimate components
% in parallel.
%
% Outputs:
% OUT_EEG = The input EEGLAB dataset with new fields icaweights, icasphere
% and icachansind (channel indices).
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
%
% See also: RUNICA, BINICA, JADER, SOBI, FASTICA.
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 01-25-02 reformated help & license -ad
% 03-07-02 add the eeglab options -ad
% 03-18-02 add other decomposition options -ad
% 03-19-02 text edition -sm
function [ALLEEG, com] = pop_runica( ALLEEG, varargin )
com = '';
if nargin < 1
help pop_runica;
return;
end
% find available algorithms
% -------------------------
allalgs(1).name = 'runica';
allalgs(1).description = 'Extended Infomax (runica.m; default)';
allalgs(1).options = '''extended'', 1, ''rndreset'', ''yes''';
allalgs(end+1).name = 'runica';
allalgs(end).description = 'Robust Extended Infomax (runica.m; slow)';
allalgs(end).options = '''extended'', 1, ''lrate'', 1e-5, ''maxstep'', 2000';
allalgs(end).help = 'See this <a href="https://sccn.ucsd.edu/wiki/Makoto%27s_useful_EEGLAB_code#How_to_obtain_practically_reproducible_ICA_results_.2809.2F26.2F2022_added.29">reference</a> for ICA conservative parameters ';
allalgs(end+1).name = 'amica';
allalgs(end).description = 'AMICA (slowest; best)';
allalgs(end).options = '''maxiter'', 2000';
allalgs(end).help = 'See this <a href="https://github.com/sccn/amica/wiki/AMICA">reference</a> for AMICA';
allalgs(end+1).name = 'picard';
allalgs(end).description = 'Infomax picard.m';
allalgs(end).options = '''maxiter'', 500, ''mode'', ''standard''';
allalgs(end).help = 'See this <a href="https://github.com/pierreablin/picard">page</a> for Picard parameters ';
allalgs(end+1).name = 'picard';
allalgs(end).description = 'FastICA picard.m (fastest)';
allalgs(end).options = '''maxiter'', 500';
allalgs(end).help = 'See this <a href="https://github.com/pierreablin/picard">page</a> for Picard parameters ';
allalgs(end+1).name = 'sobi'; allalgs(end).description = 'SOBI (sobi.m function)';
allalgs(end+1).name = 'acsobiro'; allalgs(end).description = 'SOBI (acsobiro.m function)';
allalgs(end+1).name = 'pearson_ica'; allalgs(end).description = 'Pearson (pearson_ica.m function)';
allalgs(end+1).name = 'jader'; allalgs(end).description = 'Jade (jader.m function)';
allalgs(end+1).name = 'jadeop'; allalgs(end).description = 'Jade (jadeop.m function)';
allalgs(end+1).name = 'jade_td_p'; allalgs(end).description = 'Jade (jade_td_p.m function)';
allalgs(end+1).name = 'MatlabshibbsR'; allalgs(end).description = 'MatlabshibbsR';
allalgs(end+1).name = 'fastica'; allalgs(end).description = 'FastICA (fastica.m function)';
allalgs(end+1).name = 'tica'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'simbec'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'unica'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'amuse'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'fobi'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'evd'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'evd24'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'sons'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'ng_ol'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'acrsobibpf'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'egld_ica'; allalgs(end).description = allalgs(end).name; % do not use egld_ica => too slow
allalgs(end+1).name = 'eeA'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'tfbss'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'icaML'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'icaMS'; allalgs(end).description = allalgs(end).name;
allalgs(end+1).name = 'binica'; allalgs(end).description = 'Executable runica';
defaultopts = allalgs(1).options;
for index = length(allalgs):-1:1
if ~exist(allalgs(index).name, 'file')
allalgs(index) = [];
end
end
% special AMICA (deprecated use the pop_runamica function)
% -------------
selectamica = 0;
if nargin > 1
if ischar(varargin{1})
if strcmpi(varargin{1}, 'selectamica')
selectamica = 1;
allalgs = { 'amica' allalgs{:} };
defaultopts = sprintf('''outdir'', ''%s''', fullfile(pwd, 'amicaout'));
elseif strcmpi(varargin{1}, 'selectamicaloc')
selectamica = 1;
allalgs = { 'amica' allalgs{:} };
defaultopts = sprintf('''outdir'', ''%s'', ''qsub'', ''off''', fullfile(pwd, 'amicaout'));
end
end
end
% popup window parameters
% -----------------------
fig = [];
if nargin < 2 || selectamica
commandchans = [ 'tmpchans = get(gcbf, ''userdata'');' ...
'tmpchans = tmpchans{1};' ...
'set(findobj(gcbf, ''tag'', ''chantype''), ''string'', ' ...
' int2str(pop_chansel( tmpchans )));' ...
'clear tmpchans;' ];
commandtype = ['tmptype = get(gcbf, ''userdata'');' ...
'tmptype = tmptype{2};' ...
'if ~isempty(tmptype),' ...
' [tmps,tmpv, tmpstr] = listdlg2(''PromptString'',''Select type(s)'', ''ListString'', tmptype);' ...
' if tmpv' ...
' set(findobj(''parent'', gcbf, ''tag'', ''chantype''), ''string'', tmpstr);' ...
' end;' ...
'else,' ...
' warndlg2(''No channel type'', ''No channel type'');' ...
'end;' ...
'clear tmps tmpv tmpstr tmptype tmpchans;' ];
cb_ica = ['tmpalgos = get(gcbf, ''userdata'');' ...
'tmpalgos = tmpalgos{3};' ...
'set(findobj(gcbf, ''tag'', ''params''), ''string'', tmpalgos( get(gcbo, ''value'') ).options );' ...
'disp(char(tmpalgos( get(gcbo, ''value'') ).help));' ...
'clear tmpalgos;' ];
% [ 'if get(gcbo, ''value'') < 3, ' ...
% ' set(findobj(gcbf, ''tag'', ''params''), ''string'', ''''''extended'''', 1'');' ...
% 'else,' ...
% ' tmpStr = get(gcbo, ''string'');' ....
% ' tmpAlgo = tmpStr(get(gcbo, ''value''));' ...
% ' if strcmpi(tmpAlgo, ''picard''),' ...
% ' set(findobj(gcbf, ''tag'', ''params''), ''string'', ''''''maxiter'''', 500'');' ...
% ' else,' ...
% ' set(findobj(gcbf, ''tag'', ''params''), ''string'', '''');' ...
% ' end;' ...
% 'end;' ];
promptstr = { { 'style' 'text' 'string' [ 'ICA algorithm to use (click to select)' 10 ] } ...
{ 'style' 'listbox' 'string' { allalgs.description } 'callback', cb_ica } ...
{ 'style' 'text' 'string' 'Commandline options (See help messages)' } ...
{ 'style' 'edit' 'string' defaultopts 'tag' 'params' } ...
{ 'style' 'checkbox' 'string' 'Reorder components by variance (if that''s not already the case)' 'value' 1 } ...
{ 'style' 'text' 'string' 'Use only channel type(s) or indices' } ...
{ 'style' 'edit' 'string' '' 'tag' 'chantype' } ...
{ 'style' 'pushbutton' 'string' '... types' 'callback' commandtype } ...
{ 'style' 'pushbutton' 'string' '... channels' 'callback' commandchans } };
geometry = { [2 1.5] [2 1.5] [1] [2 1 1 1] };
geomvert = [ 3 1 1 1];
if length(ALLEEG) > 1
cb1 = 'set(findobj(''parent'', gcbf, ''tag'', ''concat2''), ''value'', 0);';
cb2 = 'set(findobj(''parent'', gcbf, ''tag'', ''concat1''), ''value'', 0);';
promptstr = { promptstr{:}, ...
{ 'style' 'text' 'string' 'Concatenate all datasets (check=yes; uncheck=run ICA on each dataset)?' }, ...
{ 'style' 'checkbox' 'string' '' 'value' 0 'tag' 'concat1' 'callback' cb1 }, ...
{ 'style' 'text' 'string' 'Concatenate datasets for the same subject and session (check=yes)?' }, ...
{ 'style' 'checkbox' 'string' '' 'value' 1 'tag' 'concat2' 'callback' cb2 } };
geometry = { geometry{:} [ 2 0.2 ] [ 2 0.2 ]};
geomvert = [ geomvert 1 1];
end
% channel types
% -------------
if isfield(ALLEEG(1).chanlocs, 'type')
tmpchanlocs = ALLEEG(1).chanlocs;
alltypes = { tmpchanlocs.type };
indempty = cellfun('isempty', alltypes);
alltypes(indempty) = '';
try
alltypes = unique_bc(alltypes);
catch
alltypes = '';
end
else
alltypes = '';
end
% channel labels
% --------------
if ~isempty(ALLEEG(1).chanlocs)
tmpchanlocs = ALLEEG(1).chanlocs;
alllabels = { tmpchanlocs.labels };
else
for index = 1:ALLEEG(1).nbchan
alllabels{index} = int2str(index);
end
end
% gui
% ---
result = inputgui( 'geometry', geometry, 'geomvert', geomvert, 'uilist', promptstr, ...
'helpcom', 'pophelp(''pop_runica'')', ...
'title', 'Run ICA decomposition -- pop_runica()', 'userdata', { alllabels alltypes allalgs } );
if isempty(result)
return;
end
options = { 'icatype' allalgs(result{1}).name 'dataset' [1:length(ALLEEG)] 'options' eval( [ '{' result{2} '}' ]) 'reorder' fastif(result{3}, 'on', 'off') };
if ~isempty(result{4})
if ~isempty(str2num(result{4})), options = { options{:} 'chanind' str2num(result{4}) };
else options = { options{:} 'chanind' parsetxt(result{4}) };
end
end
if length(result) > 4
options = { options{:} 'concatenate' fastif(result{5}, 'on', 'off') };
options = { options{:} 'concatcond' fastif(result{6}, 'on', 'off') };
end
else
if mod(length(varargin),2) == 1
options = { 'icatype' varargin{1:end} };
else
options = varargin;
end
end
% decode input arguments
% ----------------------
[ g, addoptions ] = finputcheck( options, { 'icatype' 'string' unique({ allalgs.name }) 'runica'; ...
'dataset' 'integer' [] [1:length(ALLEEG)];
'options' 'cell' [] {};
'concatenate' 'string' { 'on','off' } 'off';
'concatcond' 'string' { 'on','off' } 'off';
'reorder' 'string' { 'on','off' } 'on';
'chanind' { 'cell','integer' } { [] [] } [];}, ...
'pop_runica', 'ignore');
if ischar(g), error(g); end
if ~isempty(addoptions), g.options = { g.options{:} addoptions{:}}; end
% select datasets, create new big dataset if necessary
% ----------------------------------------------------
if length(g.dataset) == 1
EEG = ALLEEG(g.dataset);
EEG = eeg_checkset(EEG, 'loaddata');
if isfield(EEG.etc, 'ic_classification')
EEG.etc = rmfield(EEG.etc, 'ic_classification');
end
elseif length(ALLEEG) > 1 && ~strcmpi(g.concatenate, 'on') && ~strcmpi(g.concatcond, 'on')
[ ALLEEG, com ] = eeg_eval( 'pop_runica', ALLEEG, 'warning', 'off', 'params', ...
{ 'icatype' g.icatype 'options' g.options 'chanind' g.chanind } );
return;
elseif length(ALLEEG) > 1 && strcmpi(g.concatcond, 'on')
allsubjects = { ALLEEG.subject };
allsessions = { ALLEEG.session };
alltags = zeros(1,length(allsubjects));
if any(cellfun('isempty', allsubjects))
errordlg2( [ 'Aborting: Subject names missing from at least one dataset file.' 10 ...
'Subject names must be stored within the datasets. To do so,' 10 ...
'use the STUDY > Edit STUDY Info menu and check the box' 10 ...
'"Dataset info (condition, group, ...) differs from study info..."' ]);
return
end
dats = {};
for index = 1:length(allsubjects)
if ~alltags(index)
allinds = strmatch(allsubjects{index}, allsubjects, 'exact');
rmind = [];
% if we have different sessions they will not be concatenated
for tmpi = setdiff_bc(allinds,index)'
if ~isequal(allsessions(index), allsessions(tmpi))
rmind = [rmind tmpi];
end
end
allinds = setdiff_bc(allinds, rmind);
fprintf('Found %d datasets for subject ''%s'' session %d\n', length(allinds), allsubjects{index}, allsessions{index});
dats = { dats{:} allinds };
alltags(allinds) = 1;
end
end
fprintf('**************************\nNOW RUNNING ALL DECOMPOSITIONS\n****************************\n');
eeglab_options;
if option_parallel
for index = 1:length(dats)
TMPEEG{index} = ALLEEG(dats{index});
end
parfor index = 1:length(dats)
TMPEEG{index} = pop_runica(TMPEEG{index}, 'icatype', g.icatype, ...
'options', g.options, 'chanind', g.chanind, 'concatenate', 'on');
end
for index = 1:length(dats)
ALLEEG(dats{index}) = TMPEEG{index};
for idat = 1:length(dats{index})
ALLEEG(dats{index}(idat)).saved = 'no';
pop_saveset(ALLEEG(dats{index}(idat)), 'savemode', 'resave');
ALLEEG(dats{index}(idat)).saved = 'yes';
end
end
else
for index = 1:length(dats)
ALLEEG(dats{index}) = pop_runica(ALLEEG(dats{index}), 'icatype', g.icatype, ...
'options', g.options, 'chanind', g.chanind, 'concatenate', 'on');
for idat = 1:length(dats{index})
ALLEEG(dats{index}(idat)).saved = 'no';
pop_saveset(ALLEEG(dats{index}(idat)), 'savemode', 'resave');
ALLEEG(dats{index}(idat)).saved = 'yes';
ALLEEG(dats{index}(idat)) = update_datafield(ALLEEG(dats{index}(idat)));
end
end
end
com = sprintf('EEG = pop_runica(EEG, %s);', ...
vararg2str({ 'icatype' g.icatype 'concatcond' 'on' 'options' g.options }) );
return;
else
% copy data
% ---------
if all([ALLEEG(g.dataset).trials] == 1)
EEG = eeg_checkset(ALLEEG, 'loaddata');
EEG = pop_mergeset(EEG, 1:length(EEG));
else
disp('Concatenating datasets...');
EEG = ALLEEG(g.dataset(1));
cpnts = 1;
% compute total data size
% -----------------------
totalpnts = 0;
for i = g.dataset
totalpnts = totalpnts+ALLEEG(g.dataset(i)).pnts*ALLEEG(g.dataset(i)).trials;
end
EEG.data = zeros(EEG.nbchan, totalpnts);
for i = g.dataset
tmplen = ALLEEG(g.dataset(i)).pnts*ALLEEG(g.dataset(i)).trials;
TMP = eeg_checkset(ALLEEG(g.dataset(i)), 'loaddata');
EEG.data(:,cpnts:cpnts+tmplen-1) = reshape(TMP.data, size(TMP.data,1), size(TMP.data,2)*size(TMP.data,3));
cpnts = cpnts+tmplen;
end
end
EEG.icaweights = [];
EEG.trials = 1;
EEG.pnts = size(EEG.data,2);
EEG.saved = 'no';
if isfield(EEG.etc, 'ic_classification')
EEG.etc = rmfield(EEG.etc, 'ic_classification');
end
end
% Store and then remove current EEG ICA weights and sphere
% ---------------------------------------------------
fprintf('\n');
if ~isempty(EEG.icaweights)
fprintf('Saving current ICA decomposition in "EEG.etc.oldicaweights" (etc.).\n');
if ~isfield(EEG,'etc'), EEG.etc = []; end
if ~isfield(EEG.etc,'oldicaweights')
EEG.etc.oldicaweights = {};
EEG.etc.oldicasphere = {};
EEG.etc.oldicachansind = {};
end
tmpoldicaweights = EEG.etc.oldicaweights;
tmpoldicasphere = EEG.etc.oldicasphere;
tmpoldicachansind = EEG.etc.oldicachansind;
EEG.etc.oldicaweights = { EEG.icaweights tmpoldicaweights{:} };
EEG.etc.oldicasphere = { EEG.icasphere tmpoldicasphere{:} };
EEG.etc.oldicachansind = { EEG.icachansind tmpoldicachansind{:} };
fprintf(' Decomposition saved as entry %d.\n',length(EEG.etc.oldicaweights));
end
EEG.icaweights = [];
EEG.icasphere = [];
EEG.icawinv = [];
EEG.icaact = [];
% select sub_channels
% -------------------
if isempty(g.chanind)
g.chanind = 1:EEG.nbchan;
end
if iscell(g.chanind)
datatype = {EEG.chanlocs.type};
tmpChanInd = [];
for iChan = 1:length(datatype)
if ~isempty(datatype{iChan}) && ~isempty(strmatch(datatype{iChan}, g.chanind))
tmpChanInd = [ tmpChanInd iChan ];
end
end
g.chanind = tmpChanInd;
end
EEG.icachansind = g.chanind;
% is pca already an option?
% -------------------------
pca_opt = 0;
for i = 1:length(g.options)
if ischar(g.options{i})
if strcmpi(g.options{i}, 'pca')
pca_opt = 1;
pca_ind = i;
end
end
end
if pca_opt
fprintf([ 'Warning: you have used PCA to reduce dimensionality so ICA\n' ...
' is not modeling the entire data, only the PCA-reduced data.\n' ]);
end
%------------------------------
% compute ICA on a definite set
% -----------------------------
tmpdata = reshape( EEG.data(g.chanind,:,:), length(g.chanind), EEG.pnts*EEG.trials);
tmprank = getrank(double(tmpdata(:,1:min(3000, size(tmpdata,2)))), pca_opt);
tmpdata = tmpdata - repmat(mean(tmpdata,2), [1 size(tmpdata,2)]); % zero mean
if ~strcmpi(g.icatype, 'binica')
try
disp('Attempting to convert data matrix to double precision for more accurate ICA results.')
tmpdata = double(tmpdata);
tmpdata = tmpdata - repmat(mean(tmpdata,2), [1 size(tmpdata,2)]); % zero mean (more precise than single precision)
catch
disp('*************************************************************')
disp('Not enough memory to convert data matrix to double precision.')
disp('All computations will be done in single precision. Matlab 7.x')
disp('under 64-bit Linux and others is imprecise in this mode.')
disp('We advise use of "binica" instead of "runica."')
disp('*************************************************************')
end
end
switch lower(g.icatype)
case 'runica'
% make sure we are using the correct ICA function
runicaCurrentLoc = fileparts(which('runica'));
runicaDesiredLoc = fullfile(fileparts(fileparts(which('pop_runica'))), 'sigprocfunc');
if ~isequal(runicaCurrentLoc, runicaDesiredLoc)
addpath(runicaDesiredLoc); % put back to the beginning of the path
end
try
if ismatlab && nargin < 2, g.options = { g.options{:}, 'interrupt', 'on' }; end
catch, end
if tmprank == size(tmpdata,1) || pca_opt
[EEG.icaweights,EEG.icasphere] = runica( tmpdata, 'lrate', 0.001, g.options{:} );
else
if nargin < 2
uilist = { { 'style' 'text' 'string' [ 'EEGLAB has detected that the rank of your data matrix' 10 ...
'is lower the number of input data channels. This might' 10 ...
'be because you are including a reference channel or' 10 ...
'because you are running a second ICA decomposition.' 10 ...
sprintf('The proposed dimension for ICA is %d (out of %d channels).', tmprank, size(tmpdata,1)) 10 ...
'Rank computation may be inaccurate so you may edit this' 10 ...
'number below. If you do not understand, simply press OK.' ] } { } ...
{ 'style' 'text' 'string' 'Proposed rank:' } ...
{ 'style' 'edit' 'string' num2str(tmprank) } };
res = inputgui('uilist', uilist, 'geometry', { [1] [1] [1 1] }, 'geomvert', [6 1 1]);
if isempty(res), return; end
tmprank = str2num(res{1});
g.options = [g.options { 'pca' tmprank }];
else
g.options = [g.options {'pca' tmprank }]; % automatic for STUDY (batch processing)
end
disp(['Data rank (' int2str(tmprank) ') is smaller than the number of channels (' int2str(size(tmpdata,1)) ').']);
[EEG.icaweights,EEG.icasphere] = runica( tmpdata, 'lrate', 0.001, g.options{:} );
end
case 'binica'
icadefs;
fprintf(['Warning: If the binary ICA function does not work, check that you have added the\n' ...
'binary file location (in the EEGLAB directory) to your Unix /bin directory (.cshrc file)\n']);
if exist(ICABINARY) ~= 2
error('Pop_runica(): binary ICA executable not found. Edit icadefs.m file to specify the ICABINARY location');
end
tmprank = getrank(tmpdata(:,1:min(3000, size(tmpdata,2))));
if tmprank == size(tmpdata,1) || pca_opt
[EEG.icaweights,EEG.icasphere] = binica( tmpdata, 'lrate', 0.001, g.options{:} );
else
disp(['Data rank (' int2str(tmprank) ') is smaller than the number of channels (' int2str(size(tmpdata,1)) ').']);
[EEG.icaweights,EEG.icasphere] = binica( tmpdata, 'lrate', 0.001, 'pca', tmprank, g.options{:} );
end
case 'amica'
if ~exist('pop_runamica')
if nargin < 2
errordlg2('You must install the AMICA plugin first to use AMICA');
else
error('You must install the AMICA plugin first to use AMICA');
end
end
EEG = pop_runamica(EEG, g.options{:});
case 'picard'
if ~exist('picard')
if nargin < 2
errordlg2('You must install the picard plugin first to use Picard');
else
error('You must install the picard plugin first to use Picard');
end
end
options2 = g.options;
if pca_opt
if g.options{pca_ind+1} < 0
fprintf('Decreasing data dimension from %d to %d using PCA...\n', size(tmpdata,1), size(tmpdata,1)+g.options{pca_ind+1});
[tmpdata,eigvec] = runpca(tmpdata, size(tmpdata,1)+g.options{pca_ind+1});
else
fprintf('Decreasing data dimension from %d to %d using PCA...\n', size(tmpdata,1), g.options{pca_ind+1});
[tmpdata,eigvec] = runpca(tmpdata, g.options{pca_ind+1});
end
options2(pca_ind:pca_ind+1) = [];
end
[~, EEG.icaweights] = picard( tmpdata, 'verbose', true, options2{:});
if pca_opt
EEG.icaweights = EEG.icaweights*pinv(eigvec);
end
case 'pearson_ica'
if isempty(g.options)
disp('Warning: EEGLAB default for pearson ICA is 1000 iterations and epsilon=0.0005');
[~, EEG.icaweights] = pearson_ica( tmpdata, 'maxNumIterations', 1000,'epsilon',0.0005);
else
[~, EEG.icaweights] = pearson_ica( tmpdata, g.options{:});
end
case 'egld_ica', disp('Warning: This algorithm is very slow!!!');
[~, EEG.icaweights] = egld_ica( tmpdata, g.options{:} );
case 'tfbss'
if isempty(g.options)
[~, EEG.icaweights] = tfbss( tmpdata, size(tmpdata,1), 8, 512 );
else
[~, EEG.icaweights] = tfbss( tmpdata, g.options{:} );
end
case 'jader', [EEG.icaweights] = jader( tmpdata, g.options{:} );
case 'matlabshibbsr', [EEG.icaweights] = MatlabshibbsR( tmpdata, g.options{:} );
case 'eea', [EEG.icaweights] = eeA( tmpdata, g.options{:} );
case 'icaml', [~, EEG.icawinv] = icaML( tmpdata, g.options{:} );
case 'icams', [~, EEG.icawinv] = icaMS( tmpdata, g.options{:} );
case 'fastica', [~, EEG.icawinv, EEG.icaweights] = fastica( tmpdata, 'displayMode', 'off', g.options{:} );
case { 'tica' 'erica' 'simbec' 'unica' 'amuse' 'fobi' 'evd' 'sons' ...
'jadeop' 'jade_td_p' 'evd24' 'sobi' 'ng_ol' 'acsobiro' 'acrsobibpf' }
fig = figure('tag', 'alg_is_run', 'visible', 'off');
if isempty(g.options), g.options = { size(tmpdata,1) }; end
switch lower(g.icatype)
case 'tica', EEG.icaweights = tica( tmpdata, g.options{:} );
case 'erica', EEG.icaweights = erica( tmpdata, g.options{:} );
case 'simbec', EEG.icaweights = simbec( tmpdata, g.options{:} );
case 'unica', EEG.icaweights = unica( tmpdata, g.options{:} );
case 'amuse', EEG.icaweights = amuse( tmpdata );
case 'fobi', [~, EEG.icaweights] = fobi( tmpdata, g.options{:} );
case 'evd', EEG.icaweights = evd( tmpdata, g.options{:} );
case 'sons', EEG.icaweights = sons( tmpdata, g.options{:} );
case 'jadeop', EEG.icaweights = jadeop( tmpdata, g.options{:} );
case 'jade_td_p',EEG.icaweights = jade_td_p( tmpdata, g.options{:} );
case 'evd24', EEG.icaweights = evd24( tmpdata, g.options{:} );
case 'sobi', EEG.icawinv = sobi( tmpdata, g.options{:} );
case 'ng_ol', [~, EEG.icaweights] = ng_ol( tmpdata, g.options{:} );
case 'acsobiro', EEG.icawinv = acsobiro( tmpdata, g.options{:} );
case 'acrsobibpf', EEG.icawinv = acrsobibpf( tmpdata, g.options{:} );
end
clear tmp;
close(fig);
otherwise, error('Pop_runica: unrecognized algorithm');
end
% update weight and inverse matrices etc...
% -----------------------------------------
if ~isempty(fig), try close(fig); catch, end; end
if isempty(EEG.icaweights)
EEG.icaweights = pinv(EEG.icawinv);
end
if isempty(EEG.icasphere)
EEG.icasphere = eye(size(EEG.icaweights,2));
end
if isempty(EEG.icawinv)
EEG.icawinv = pinv(EEG.icaweights*EEG.icasphere); % a priori same result as inv
end
% Reorder components by variance
% ------------------------------
meanvar = sum(EEG.icawinv.^2).*sum(transpose((EEG.icaweights * EEG.icasphere)*EEG.data(EEG.icachansind,:)).^2)/((length(EEG.icachansind)*EEG.pnts)-1);
[~, windex] = sort(meanvar);
windex = windex(end:-1:1); % order large to small
meanvar = meanvar(windex);
EEG.icaweights = EEG.icaweights(windex,:);
EEG.icawinv = pinv( EEG.icaweights * EEG.icasphere );
if ~isempty(EEG.icaact)
EEG.icaact = EEG.icaact(windex,:,:);
end
% copy back data to datasets if necessary
% ---------------------------------------
if length(g.dataset) > 1
for i = g.dataset
ALLEEG(i).icaweights = EEG.icaweights;
ALLEEG(i).icasphere = EEG.icasphere;
ALLEEG(i).icawinv = EEG.icawinv;
ALLEEG(i).icachansind = g.chanind;
end
ALLEEG = eeg_checkset(ALLEEG);
else
EEG = eeg_checkset(EEG);
ALLEEG = eeg_store(ALLEEG, EEG, g.dataset);
end
if nargin < 2 || selectamica
if ~isempty(g.options)
com = sprintf('EEG = pop_runica(EEG, ''icatype'', ''%s'', %s);', g.icatype, vararg2str(g.options) ); %vararg2str({ 'icatype' g.icatype 'dataset' g.dataset 'options' g.options }) );
else
com = sprintf('EEG = pop_runica(EEG, ''icatype'', ''%s'');',g.icatype );
end
end
return;
function tmprank2 = getrank(tmpdata, pca_opt)
tmprank = rank(tmpdata);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Here: alternate computation of the rank by Sven Hoffman
%tmprank = rank(tmpdata(:,1:min(3000, size(tmpdata,2)))); old code
covarianceMatrix = cov(tmpdata', 1);
[~, D] = eig (covarianceMatrix);
rankTolerance = 1e-7;
tmprank2=sum (diag (D) > rankTolerance);
if tmprank ~= tmprank2
if nargin >= 2 && pca_opt ~= 0
fprintf('Warning: fixing rank computation inconsistency (%d vs %d) most likely because running under Linux 64-bit Matlab, taking the minimum\n', tmprank, tmprank2);
end
tmprank2 = min(tmprank, tmprank2);
end
function EEG = update_datafield(EEG)
if ~isfield(EEG, 'datfile'), EEG.datfile = ''; end
if ~isempty(EEG.datfile)
EEG.data = EEG.datfile;
else
EEG.data = 'in set file';
end
EEG.icaact = [];