[422372]: / functions / miscfunc / mapcorr.m

Download this file

236 lines (204 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
% MAPCORR - Find matching rows in two matrices and their corrs.
% Uses the Hungarian (default), VAM, or maxcorr assignment methods.
% (Follow with MATPERM to permute and sign x -> y).
%
% Finds correlation of maximum common subset of channels (using
% channel location files to match channel labels.) Thus, number
% of channels can differ in x and y.
%
% Usage:
% >> [corr,indx,indy,corrs] = matcorr(x,y,ch1,ch2);
% >> [corr,indx,indy,corrs] = matcorr(x,y,ch1,ch2,rmmean,method,weighting);
%
% Inputs:
% x = first input matrix. Row are difference components and columns
% the channels for these components.
% y = matrix with same number of columns (channels) as x
% ch1 = channel locations file for x
% ch2 = channel locations file for y
%
% Optional inputs:
% rmmean = When present and non-zero, remove row means prior to correlation
% {default: 0}
% method = Method used to find assignments.
% 0= Hungarian Method - maximize sum of abs corrs {default: 2}
% 1= Vogel's Assignment Method -find pairs in order of max contrast
% 2= Max Abs Corr Method - find pairs in order of max abs corr
% Note that the methods 0 and 1 require matrices to be square.
% weighting = An optional weighting matrix size(weighting) = size(corrs) that
% weights the corrs matrix before pair assignment {def: 0/[]->ONES}
% Outputs:
% corr = a column vector of correlation coefficients between
% best-correlating rows of matrice x and y
% indx = a column vector containing the index of the maximum
% abs-correlated x row in descending order of abs corr
% (no duplications)
% indy = a column vector containing the index of the maximum
% abs-correlated row of y in descending order of abs corr
% (no duplications)
% corrs = an optional square matrix of row-correlation coefficients
% between matrices x and y
%
% Note: outputs are sorted by abs(corr)
%
% Authors: Scott Makeig & Sigurd Enghoff, SCCN/INC/UCSD, La Jolla, 11-30-96
% Copyright (C) 11-30-96 Scott Makeig, SCCN/INC/UCSD, scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 2007/03/20 02:33:48 arno, Andreas fix
% 2003/09/04 23:21:06 scott, changed default matching method to Max Abs Corr
% 04-22-99 Re-written using VAM by Sigurd Enghoff, CNL/Salk
% 04-30-99 Added revision of algorithm loop by SE -sm
% 05-25-99 Added Hungarian method assignment by SE
% 06-15-99 Maximum correlation method reinstated by SE
% 08-02-99 Made order of outputs match help msg -sm
% 02-16-00 Fixed order of corr output under VAM added method explanations,
% and returned corr signs in abs max method -sm
% 01-25-02 reformated help & license, added links -ad
% Uses function hungarian.m
function [corr,indx,indy,corrs] = mapcorr(x,y,ch1,ch2,rmmean,method,weighting)
%
if nargin < 4
help matcorr
return
end
if nargin < 6
method = 2; % default: Max Abs Corr - select successive best abs(corr) pairs
end
[m,n] = size(x);
[p,q] = size(y);
m = min(m,p);
if m~=n || p~=q
if nargin>5 && method~=2
fprintf('matcorr(): Matrices are not square: using max abs corr method (2).\n');
end
method = 2; % Can accept non-square matrices
end
if nargin < 5 || isempty(rmmean)
rmmean = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if rmmean
x = x - mean(x')'*ones(1,n); % optionally remove means
y = y - mean(y')'*ones(1,n);
end
for i = 1:m
for j = 1:p
corrs(i,j) = compcorr(x(i,:)',ch1,y(j,:)',ch2);
end
end
%dx = sum(x'.^2);
%dy = sum(y'.^2);
%dx(find(dx==0)) = 1;
%dy(find(dy==0)) = 1;
%corrs = x*y'./sqrt(dx'*dy);
if nargin > 6 && ~isempty(weighting) && norm(weighting) > 0,
if any(size(corrs) ~= size(weighting))
fprintf('matcorr(): weighting matrix size must match that of corrs\n.')
return
else
corrs = corrs.*weighting;
end
end
cc = abs(corrs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch method
case 0
ass = hungarian(-cc); % Performs Hungarian algorithm matching
idx1 = sub2ind(size(cc),ass,1:m);
[dummy idx2] = sort(-cc(idx1));
corr = corrs(idx1);
corr = corr(idx2)';
indy = [1:m]';
indx = ass(idx2)';
indy = indy(idx2);
case 1 % Implements the VAM assignment method
indx = zeros(m,1);
indy = zeros(m,1);
corr = zeros(m,1);
for i=1:m,
[sx ix] = sort(cc); % Looks for maximum salience along a row/column
[sy iy] = sort(cc'); % rather than maximum correlation.
[sxx ixx] = max(sx(end,:)-sx(end-1,:));
[syy iyy] = max(sy(end,:)-sy(end-1,:));
if sxx == syy
if sxx == 0 && syy == 0
[sxx ixx] = max((sx(end,:)-sx(end-1,:)) .* sx(end,:));
[syy iyy] = max((sy(end,:)-sy(end-1,:)) .* sy(end,:));
else
sxx = sx(end,ixx); % takes care of identical vectors
syy = sy(end,iyy); % and zero vectors
end
end
if sxx > syy
indx(i) = ix(end,ixx);
indy(i) = ixx;
else
indx(i) = iyy;
indy(i) = iy(end,iyy);
end
cc(indx(i),:) = -1;
cc(:,indy(i)) = -1;
end
i = sub2ind(size(corrs),indx,indy);
corr = corrs(i);
[tmp j] = sort(-abs(corr)); % re-sort by abs(correlation)
corr = corr(j);
indx = indx(j);
indy = indy(j);
case 2 % match successive max(abs(corr)) pairs
indx = zeros(size(cc,1),1);
indy = zeros(size(cc,1),1);
corr = zeros(size(cc,1),1);
for i = 1:size(cc,1)
[tmp j] = max(cc(:));
% [corr(i) j] = max(cc(:));
[indx(i) indy(i)] = ind2sub(size(cc),j);
corr(i) = corrs(indx(i),indy(i));
cc(indx(i),:) = -1; % remove from contention
cc(:,indy(i)) = -1;
end
otherwise
error('Unknown method');
end
function corr = compcorr(a1,ch1,a2,ch2)
n1 = length(a1);
n2 = length(a2);
%if n1 < n2
cnt = 0;
corr = 0;
for i = 1:n1
for j = 1:n2
if strcmp(ch1(i).labels,ch2(j).labels)
cnt = cnt+1;
b1(cnt,1) = a1(i);
b2(cnt,1) = a2(j);
end
end
end
b1 = b1 / norm(b1);
b2 = b2 / norm(b2);
corr = b1'*b2;