[422372]: / functions / miscfunc / make_timewarp.m

Download this file

227 lines (197 with data), 11.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% MAKE_TIMEWARP - Select a subset of epochs containing a given event sequence, and return
% a matrix of latencies for time warping the selected epochs to a common
% timebase in NEWTIMEF. Events in the given sequence may be further
% restricted to those with specified event field values.
% Usage:
% >> timeWarp = make_timewarp(EEG, eventSequence, 'key1',value1,
% 'key2',value2,...);
%
% Inputs:
% EEG - dataset structure
% eventSequence - cell array containing a sequence of event type strings.
% For example, to select epochs containing a 'movement Onset'
% event followed by a 'movement peak', use
% {'movement Onset' 'movement peak'}
% The output timeWarp matrix will contain the epoch latencies
% of the two events for each selected epoch.
%
% Optional inputs (in 'key', value format):
% 'baselineLatency' - (ms) the minimum acceptable epoch latency for the first
% event in the sequence {default: 0}
% 'eventConditions' - cell array specifying conditions on event fields.
% For example, for a sequence consisting of two
% events with (velocity) fields vx and vy, use
% {vx>0' 'vx>0 && vy<1'}
% To accept events unconditionally, use empty strings,
% for example {'vx>0','',''} {default: no conditions}
% 'maxSTDForAbsolute' - (positive number of std. devs.) Remove epochs containing events
% whose latencies are more than this number of standard deviations
% from the mean in the selected epochs. {default: Inf -> no removal}
% 'maxSTDForRelative' - (positive number of std. devs.) Remove epochs containing inter-event
% latency differences larger or smaller than this number of standard deviations
% from the mean in the selected epochs. {default: Inf -> no removal}
% Outputs:
% timeWarp - a structure with latencies (time-warp matrix with fields
% timeWarp.latencies - an (N, M) timewarp matrix for use in NEWTIMEF
% where N = number of selected epochs containing the specified sequence,
% M = number of events in specified event sequence.
% timeWarp.epochs - a (1, M) vector giving the index of epochs with the
% specified sequence. Only these epochs should be passed to NEWTIMEF.
% timeWarp.eventSequence - same as the 'eventSequence' input variable.
% Example:
% % Create a timewarp matrix for a sequence of events, first an event of type 'movement Onset' followed by
% % a 'movement peak' event, with event fields vx and vy:
%
% >> timeWarp = make_timewarp(EEG, {'movement Onset' 'movement% peak'},'baselineLatency', 0 ...
% ,'eventConditions', {'vx>0' 'vx>0 && vy<1'});
%
% % To remove events with latencies more than 3 standard deviations from the mean OR 2 std. devs.
% % from the mean inter-event difference:
%
% >> timeWarp = make_timewarp(EEG, {'movement Onset' 'movement peak'},'baselineLatency', 0, ...
% 'eventConditions', {'vx>0' 'vx>0 && vy<1'},'maxSTDForAbsolute', 3,'maxSTDForRelative', 2);
%
% Author: Nima Bigdely Shamlo, SCCN/INC/UCSD, 2008
% See also: SHOW_EVENTS, NEWTIMEF
% Copyright (C) Nima Bigdely Shamlo, SCCN/INC/UCSD, 2008
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function timeWarpStructure = make_timewarp(EEG, eventSequence, varargin)
inputKeyValues = finputcheck(varargin, ...
{'baselineLatency' 'real' [] 0; ...
'eventConditions' 'cell' {} {} ; ...
'maxSTDForAbsolute' 'real' [0 Inf] Inf; ...
'maxSTDForRelative' 'real' [0 Inf] Inf...
});
baselineLatency = [];
maxSTDForAbsolute = 0;
maxSTDForRelative = 0;
eventConditions = [];
% place key values into function workspace variables
inputKeyValuesFields = fieldnames(inputKeyValues);
for i=1:length(inputKeyValuesFields)
eval([inputKeyValuesFields{i} '= inputKeyValues.' inputKeyValuesFields{i} ';']);
end
if length(eventConditions) < length(eventSequence)
for i = (length(eventConditions)+1):length(eventSequence)
eventConditions{i} = '';
end
end
epochsIsAcceptable = ones(1, length(EEG.epoch));
for epochNumber = 1:length(EEG.epoch)
eventNameID = 1;
minimumLatency = baselineLatency;
timeWarp{epochNumber} = [];
while eventNameID <= length(eventSequence) % go tthrought event names and find the event that comes after a certain event with correct type and higher latency
firstLatency = eventsOfCertainTypeAfterCertainLatencyInEpoch(EEG.epoch(epochNumber), eventSequence{eventNameID}, minimumLatency, eventConditions{eventNameID});
if isempty(firstLatency) % means there were no events, so the epoch is not acceptable
break;
else
timeWarp{epochNumber} = [timeWarp{epochNumber}; firstLatency];
minimumLatency = firstLatency;
eventNameID = eventNameID + 1;
end
end
if length(timeWarp{epochNumber}) < length(eventSequence)
epochsIsAcceptable(epochNumber) = false;
end
end
acceptableEpochs = find(epochsIsAcceptable);
if isempty(acceptableEpochs)
timeWarp = {}; % no epoch meet the criteria
else
timeWarp = cell2mat(timeWarp(acceptableEpochs));
rejectedEpochesBasedOnLateny = union_bc(rejectEventsBasedOnAbsoluteLatency(timeWarp), rejectEventsBasedOnRelativeLatency(timeWarp));
timeWarp(:,rejectedEpochesBasedOnLateny) = [];
acceptableEpochs(rejectedEpochesBasedOnLateny) = [];
end
% since latencies and accepted epochs always have to be together, we put them in one structure
timeWarpStructure.latencies = timeWarp'; % make it suitable for newtimef()
if isempty(timeWarpStructure.latencies) % when empty, it becomes a {} instead of [], so we change it to []
timeWarpStructure.latencies = [];
end
timeWarpStructure.epochs = acceptableEpochs;
timeWarpStructure.eventSequence = eventSequence;
function rejectedBasedOnLateny = rejectEventsBasedOnRelativeLatency(timeWarp)
% remeve epochs in which the time warped event is further than n
% standard deviations to mean of latency distance between events
timeWarpDiff = diff(timeWarp);
rejectedBasedOnLateny = [];
for eventNumber = 1:size(timeWarpDiff, 1)
rejectedBasedOnLateny = [rejectedBasedOnLateny find(abs(timeWarpDiff(eventNumber, :)- mean(timeWarpDiff(eventNumber, :))) > maxSTDForRelative * std(timeWarpDiff(eventNumber, :)))];
end
rejectedEpochesBasedOnLateny = unique_bc(rejectedBasedOnLateny);
end
function rejectedBasedOnLateny = rejectEventsBasedOnAbsoluteLatency(timeWarp)
% remeve instances in which the time warped event is further than n
% standard deviations to mean
rejectedBasedOnLateny = [];
for eventNumber = 1:size(timeWarp, 1)
rejectedBasedOnLateny = [rejectedBasedOnLateny find(abs(timeWarp(eventNumber, :)- mean(timeWarp(eventNumber, :))) > maxSTDForAbsolute* std(timeWarp(eventNumber, :)))];
end
rejectedEpochesBasedOnLateny = unique_bc(rejectedBasedOnLateny);
end
function [firstLatency resultEventNumbers] = eventsOfCertainTypeAfterCertainLatencyInEpoch(epoch, certainEventType, certainLatency, certainCondition)
resultEventNumbers = [];
firstLatency = []; % first event latency that meets the critria
for eventNumber = 1:length(epoch.eventtype)
% if strcmp(certainEventType, epoch.eventtype(eventNumber)) && epoch.eventlatency{eventNumber} >= certainLatency && eventMeetsCondition(epoch, eventNumber, certainCondition)
if eventIsOfType(epoch.eventtype(eventNumber), certainEventType) && epoch.eventlatency{eventNumber} >= certainLatency && eventMeetsCondition(epoch, eventNumber, certainCondition)
resultEventNumbers = [resultEventNumbers eventNumber];
if isempty(firstLatency)
firstLatency = epoch.eventlatency{eventNumber};
end
end
end
end
function result = eventMeetsCondition(epoch, eventNumber, condition)
if strcmp(condition,'') || strcmp(condition,'true')
result = true;
else
% get the name thatis before themfor field in the epoch, then remove 'event' name
epochField = fieldnames(epoch);
for i=1:length(epochField)
epochField{i} = strrep(epochField{i},'event',''); % remove event from the beginning of field names
condition = strrep(condition, epochField{i}, ['cell2mat(epoch.event' epochField{i} '(' num2str(eventNumber) '))' ]);
end
result = eval(condition);
end
end
function result = eventIsOfType(eventStr, types)
% if events are numbers, turn them into strings before comparison
if ischar(types)
if iscell(eventStr) && isnumeric(cell2mat(eventStr))
eventStr = num2str(cell2mat(eventStr));
end
result = strcmp(eventStr, types);
else % it must be a cell of strs
result = false;
for i=1:length(types)
result = result || strcmp(eventStr, types{i});
end
end
end
end