Download this file

1130 lines (1033 with data), 43.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
% TIMEF - Returns estimates and plots of mean event-related spectral
% perturbation (ERSP) and inter-trial coherence (ITC) changes
% across event-related trials (epochs) of a single input time series.
% * Uses either fixed-window, zero-padded FFTs (fastest), wavelet
% 0-padded DFTs (both Hanning-tapered), OR multitaper spectra ('mtaper').
% * For the wavelet and FFT methods, output frequency spacing
% is the lowest frequency ('srate'/'winsize') divided by 'padratio'.
% NaN input values (such as returned by EVENTLOCK) are ignored.
% * If 'alpha' is given, then bootstrap statistics are computed
% (from a distribution of 'naccu' surrogate data trials) and
% non-significant features of the output plots are zeroed out
% (i.e., plotted in green).
% * Given a 'topovec' scalp map weights vector and an 'elocs' electrode
% location file or structure, the figure also shows a TOPOPLOT
% image of the specified scalp map.
%
% * Note: Left-click on subplots to view and zoom in separate windows.
% Usage:
% >> [ersp,itc,powbase,times,freqs,erspboot,itcboot,itcphase] = ...
% timef(data,frames,tlimits,srate,cycles,...
% 'key1',value1,'key2',value2, ... );
% NOTE:
% * For more detailed information about TIMEF, >> timef details
% * Default values may differ when called from POP_TIMEF
%
% Required inputs:
% data = Single-channel data vector (1,frames*ntrials) (required)
% frames = Frames per trial {def|[]: datalength}
% tlimits = [mintime maxtime] (ms) Epoch time limits
% {def|[]: from frames,srate}
% srate = data sampling rate (Hz) {def:250}
% cycles = If 0 -> Use FFTs (with constant window length) {0 = FFT}
% If >0 -> Number of cycles in each analysis wavelet
% If [wavecycles factor] -> wavelet cycles increase with
% frequency beginning at wavecyles (0<factor<1; factor=1
% -> no increase, standard wavelets; factor=0 -> fixed epoch
% length, as in FFT. Else, 'mtaper' -> multitaper decomp.
%
% Optional Inter-Irial Coherence (ITC) type:
% 'type' = ['coher'|'phasecoher'] Compute either linear coherence
% ('coher') or phase coherence ('phasecoher') also known
% as the phase coupling factor {'phasecoher'}.
% Optional detrending:
% 'detret' = ['on'|'off'], Detrend data in time. {'off'}
% 'detrep' = ['on'|'off'], Detrend data across trials {'off'}
%
% Optional FFT/DFT parameters:
% 'winsize' = If cycles==0: data subwindow length (fastest, 2^n<frames);
% If cycles >0: *longest* window length to use. This
% determines the lowest output frequency {~frames/8}
% 'timesout' = Number of output times (int<frames-winframes) {200}
% 'padratio' = FFT-length/winframes (2^k) {2}
% Multiplies the number of output frequencies by
% dividing their spacing. When cycles==0, frequency
% spacing is (low_freq/padratio).
% 'maxfreq' = Maximum frequency (Hz) to plot (& to output if cycles>0)
% If cycles==0, all FFT frequencies are output. {50}
% 'baseline' = Spectral baseline window center end-time (in ms). {0}
% 'powbase' = Baseline spectrum (power, not dB) to normalize the data.
% {def|NaN->from data}
%
% Optional multitaper parameters:
% 'mtaper' = If [N W], performs multitaper decomposition.
% (N is the time resolution and W the frequency resolution;
% maximum taper number is 2NW-1). Overwrites 'winsize' and
% 'padratio'.
% If [N W K], uses K Slepian tapers (if possible).
% Phase is calculated using standard methods.
% The use of mutitaper with wavelets (cycles>0) is not
% recommended (as multiwavelets are not implemented).
% Uses Matlab functions DPSS, PMTM. {no multitaper}
%
% Optional bootstrap parameters:
% 'alpha' = If non-0, compute two-tailed bootstrap significance prob.
% level. Show non-signif. output values in green {0}
% 'naccu' = Number of bootstrap replications to accumulate {200}
% 'baseboot' = Bootstrap baseline to subtract (1 -> use 'baseline'(above)
% 0 -> use whole trial) {1}
% Optional scalp map:
% 'topovec' = Scalp topography (map) to plot {none}
% 'elocs' = Electrode location file for scalp map
% File should be ascii in format of >> topoplot example
% May also be an EEG.chanlocs struct.
% {default: file named in icadefs.m}
% Optional plotting parameters:
% 'hzdir' = ['up'|'down'] Direction of the frequency axes; reads default
% from icadefs.m {'up'}
% 'plotersp' = ['on'|'off'] Plot power spectral perturbations {'on'}
% 'plotitc' = ['on'|'off'] Plot inter trial coherence {'on'}
% 'plotphase' = ['on'|'off'] Plot sign of the phase in the ITC panel, i.e.
% green->red, pos.-phase ITC, green->blue, neg.-phase ITC {'on'}
% 'erspmax' = [real dB] set the ERSP max. for the scale (min= -max){auto}
% 'itcmax' = [real<=1] set the ITC maximum for the scale {auto}
% 'title' = Optional figure title {none}
% 'marktimes' = Non-0 times to mark with a dotted vertical line (ms) {none}
% 'linewidth' = Line width for 'marktimes' traces (thick=2, thin=1) {2}
% 'pboot' = Bootstrap power limits (e.g., from TIMEF) {from data}
% 'rboot' = Bootstrap ITC limits (e.g., from TIMEF) {from data}
% 'axesfont' = Axes text font size {10}
% 'titlefont' = Title text font size {8}
% 'vert' = [times_vector] -> plot vertical dashed lines at given ms.
% 'verbose' = ['on'|'off'] print text {'on'}
%
% Outputs:
% ersp = Matrix (nfreqs,timesout) of log spectral diffs. from
% baseline (in dB). NB: Not masked for significance.
% Must do this using erspboot
% itc = Matrix of inter-trial coherencies (nfreqs,timesout)
% (range: [0 1]) NB: Not masked for significance.
% Must do this using itcboot
% powbase = Baseline power spectrum (NOT in dB, used to norm. the ERSP)
% times = Vector of output times (sub-window centers) (in ms)
% freqs = Vector of frequency bin centers (in Hz)
% erspboot = Matrix (2,nfreqs) of [lower;upper] ERSP significance diffs
% itcboot = Matrix (2,nfreqs) of [lower;upper] ITC thresholds (not diffs)
% itcphase = Matrix (nfreqs,timesout) of ITC phase (in radians)
%
% Plot description:
% Assuming both 'plotersp' and 'plotitc' options are 'on' (= default).
% The upper panel presents the data ERSP (Event-Related Spectral Perturbation)
% in dB, with mean baseline spectral activity (in dB) subtracted. Use
% "'baseline', NaN" to prevent TIMEF from removing the baseline.
% The lower panel presents the data ITC (Inter-Trial Coherence).
% Click on any plot axes to pop up a new window (using 'AXCOPY')
% -- Upper left marginal panel presents the mean spectrum during the baseline
% period (blue), and when significance is set, the significance threshold
% at each frequency (dotted green-black trace).
% -- The marginal panel under the ERSP image shows the maximum (green) and
% minimum (blue) ERSP values relative to baseline power at each frequency.
% -- The lower left marginal panel shows mean ITC across the imaged time range
% (blue), and when significance is set, the significance threshold (dotted
% green-black).
% -- The marginal panel under the ITC image shows the ERP (which is produced by
% ITC across the data spectral pass band).
%
% Author: Sigurd Enghoff, Arnaud Delorme & Scott Makeig
% CNL / Salk Institute 1998- | SCCN/INC, UCSD 2002-
%
% Known problems:
% Significance masking currently fails for linear coherence.
%
% See also: CROSSF
% Copyright (C) 1998 Sigurd Enghoff, Scott Makeig, Arnaud Delorme,
% CNL / Salk Institute 8/1/98-8/28/01
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 10-19-98 avoided division by zero (using MIN_ABS) -sm
% 10-19-98 improved usage message and commandline info printing -sm
% 10-19-98 made valid [] values for tvec and g.elocs -sm
% 04-01-99 added missing freq in freqs and plots, fixed log scaling bug -se & -tpj
% 06-29-99 fixed frequency indexing for constant-Q -se
% 08-24-99 reworked to handle NaN input values -sm
% 12-07-99 adjusted ERPtimes to plot ERP under ITC -sm
% 12-22-99 debugged ERPtimes, added BASE_BOOT -sm
% 01-10-00 debugged BASE_BOOT=0 -sm
% 02-28-00 added NOTE on formula derivation below -sm
% 03-16-00 added AXCOPY feature -sm & tpj
% 04-16-00 added multiple marktimes loop -sm
% 04-20-00 fixed ITC cbar limits when specified in input -sm
% 07-29-00 changed frequencies displayed msg -sm
% 10-12-00 fixed bug in freqs when cycles>0 -sm
% 02-07-01 fixed inconsistency in BASE_BOOT use -sm
% 08-28-01 matlab 'key' value arguments -ad
% 08-28-01 multitaper decomposition -ad
% 01-25-02 reformated help & license -ad
% 03-08-02 debug & compare to old timef function -ad
% 03-16-02 timeout automatically adjusted if too high -ad
% 04-02-02 added 'coher' option -ad
function [P,R,mbase,times,freqs,Pboot,Rboot,Rphase,PA] = timef(X,frames,tlimits,Fs,varwin,varargin);
% Note: undocumented arg PA is output of 'phsamp','on'
%varwin,winsize,g.timesout,g.padratio,g.maxfreq,g.topovec,g.elocs,g.alpha,g.marktimes,g.powbase,g.pboot,g.rboot)
% ITC: Normally, R = |Sum(Pxy)| / (Sum(|Pxx|)*Sum(|Pyy|)) is linear coherence.
% But here, we consider: Phase(Pyy) = 0 and |Pyy| = 1 -> Pxy = Pxx
% Giving, R = |Sum(Pxx)|/Sum(|Pxx|), the inter-trial coherence (ITC)
% Also called 'phase-locking factor' by Tallon-Baudry et al. (1996),
% the ITC is the phase coherence between the data time series and the
% time-locking event time series.
% Read system-wide / dir-wide constants:
icadefs
% Constants set here:
ERSP_CAXIS_LIMIT = 0; % 0 -> use data limits; else positive value
% giving symmetric +/- caxis limits.
ITC_CAXIS_LIMIT = 0; % 0 -> use data limits; else positive value
% giving symmetric +/- caxis limits.
% Commandline arg defaults:
DEFAULT_EPOCH = NaN; % Frames per trial
DEFAULT_TIMLIM = NaN; % Time range of g.frames (ms)
DEFAULT_FS = 250; % Sampling frequency (Hz)
DEFAULT_NWIN = 200; % Number of windows = horizontal resolution
DEFAULT_VARWIN = 0; % Fixed window length or fixed number of cycles.
% =0: fix window length to that determined by nwin
% >0: set window length equal to varwin cycles
% Bounded above by winsize, which determines
% the min. freq. to be computed.
DEFAULT_OVERSMP = 2; % Number of times to oversample frequencies
DEFAULT_MAXFREQ = 50; % Maximum frequency to display (Hz)
DEFAULT_TITLE = ''; % Figure title
DEFAULT_ELOC = 'chan.locs'; % Channel location file
DEFAULT_ALPHA = NaN; % Percentile of bins to keep
DEFAULT_MARKTIME= NaN;
% Font sizes:
AXES_FONT = 10; % axes text FontSize
TITLE_FONT = 8;
if nargout>7
Rphase = []; % initialize in case Rphase asked for, but ITC not computed
end
if (nargin < 1)
help timef
return
end
if ischar(X) && strcmp(X,'details')
more on
help timefdetails
more off
return
end
if (min(size(X))~=1 || length(X)<2)
error('Data must be a row or column vector.');
end
if nargin < 2 || isempty(frames) || isnan(frames)
frames = DEFAULT_EPOCH;
elseif (~isnumeric(frames) || length(frames)~=1 || frames~=round(frames))
error('Value of frames must be an integer.');
elseif (frames <= 0)
error('Value of frames must be positive.');
elseif (rem(length(X),frames) ~= 0)
error('Length of data vector must be divisible by frames.');
end
if isnan(frames) || isempty(frames)
frames = length(X);
end
if nargin < 3 || isempty(tlimits) || isnan(tlimits(1))
tlimits = DEFAULT_TIMLIM;
elseif (~isnumeric(tlimits) || sum(size(tlimits))~=3)
error('Value of tlimits must be a vector containing two numbers.');
elseif (tlimits(1) >= tlimits(2))
error('tlimits interval must be ascending.');
end
if (nargin < 4)
Fs = DEFAULT_FS;
elseif (~isnumeric(Fs) || length(Fs)~=1)
error('Value of srate must be a number.');
elseif (Fs <= 0)
error('Value of srate must be positive.');
end
if isempty(tlimits) || isnan(tlimits(1))
hlim = 1000*frames/Fs; % fit default tlimits to srate and frames
tlimits = [0 hlim];
end
framesdiff = frames - Fs*(tlimits(2)-tlimits(1))/1000;
if abs(framesdiff) > 1
error('Given time limits, frames and sampling rate are incompatible');
elseif framesdiff ~= 0
tlimits(1) = tlimits(1) - 0.5*framesdiff*1000/Fs;
tlimits(2) = tlimits(2) + 0.5*framesdiff*1000/Fs;
fprintf('Adjusted time limits slightly, to [%.1f,%.1f] ms, to match frames and srate.\n',tlimits(1),tlimits(2));
end
if (nargin < 5)
varwin = DEFAULT_VARWIN;
elseif (~isnumeric(varwin) || length(varwin)>2)
error('Value of cycles must be a number.');
elseif (varwin < 0)
error('Value of cycles must be zero or positive.');
end
% consider structure for these arguments
% --------------------------------------
if ~isempty(varargin)
try, g = struct(varargin{:});
catch, error('Argument error in the {''param'', value} sequence'); end;
end
g.tlimits = tlimits;
g.frames = frames;
g.srate = Fs;
g.cycles = varwin(1);
if length(varwin)>1
g.cyclesfact = varwin(2);
else
g.cyclesfact = 1;
end
try, g.title; catch, g.title = DEFAULT_TITLE; end
try, g.winsize; catch, g.winsize = max(pow2(nextpow2(g.frames)-3),4); end
try, g.pad; catch, g.pad = max(pow2(nextpow2(g.winsize)),4); end
try, g.timesout; catch, g.timesout = DEFAULT_NWIN; end
try, g.padratio; catch, g.padratio = DEFAULT_OVERSMP; end
try, g.maxfreq; catch, g.maxfreq = DEFAULT_MAXFREQ; end
try, g.topovec; catch, g.topovec = []; end
try, g.elocs; catch, g.elocs = DEFAULT_ELOC; end
try, g.alpha; catch, g.alpha = DEFAULT_ALPHA; end;
try, g.marktimes; catch, g.marktimes = DEFAULT_MARKTIME; end
try, g.powbase; catch, g.powbase = NaN; end
try, g.pboot; catch, g.pboot = NaN; end
try, g.rboot; catch, g.rboot = NaN; end
try, g.plotersp; catch, g.plotersp = 'on'; end
try, g.plotitc; catch, g.plotitc = 'on'; end
try, g.detrep; catch, g.detrep = 'off'; end
try, g.detret; catch, g.detret = 'off'; end
try, g.baseline; catch, g.baseline = 0; end
try, g.baseboot; catch, g.baseboot = 1; end
try, g.linewidth; catch, g.linewidth = 2; end
try, g.naccu; catch, g.naccu = 200; end
try, g.mtaper; catch, g.mtaper = []; end
try, g.vert; catch, g.vert = []; end
try, g.type; catch, g.type = 'phasecoher'; end
try, g.phsamp; catch, g.phsamp = 'off'; end
try, g.plotphase; catch, g.plotphase = 'on'; end
try, g.itcmax; catch, g.itcmax = []; end
try, g.erspmax; catch, g.erspmax = []; end
try, g.verbose; catch, g.verbose = 'on'; end
try, g.chaninfo; catch, g.chaninfo = []; end
try, g.hzdir; catch, g.hzdir = HZDIR; end; % default from icadefs
lasterr('');
% testing arguments consistency
% -----------------------------
if strcmp(g.hzdir,'up')
g.hzdir = 'normal';
elseif strcmp(g.hzdir,'down')
g.hzdir = 'reverse';
else
error('unknown ''hzdir'' value - not ''up'' or ''down''');
end
switch lower(g.verbose)
case { 'on', 'off' }, ;
otherwise error('verbose must be either on or off');
end
if (~ischar(g.title))
error('Title must be a string.');
end
if (~isnumeric(g.winsize) || length(g.winsize)~=1 || g.winsize~=round(g.winsize))
error('Value of winsize must be an integer number.');
elseif (g.winsize <= 0)
error('Value of winsize must be positive.');
elseif (g.cycles == 0 && pow2(nextpow2(g.winsize)) ~= g.winsize)
error('Value of winsize must be an integer power of two [1,2,4,8,16,...]');
elseif (g.winsize > g.frames)
error('Value of winsize must be less than frames per epoch.');
end
if (~isnumeric(g.timesout) || length(g.timesout)~=1 || g.timesout~=round(g.timesout))
error('Value of timesout must be an integer number.');
elseif (g.timesout <= 0)
error('Value of timesout must be positive.');
end
if (g.timesout > g.frames-g.winsize)
g.timesout = g.frames-g.winsize;
disp(['Value of timesout must be <= frames-winsize, timeout adjusted to ' int2str(g.timesout) ]);
end
if (~isnumeric(g.padratio) || length(g.padratio)~=1 || g.padratio~=round(g.padratio))
error('Value of padratio must be an integer.');
elseif (g.padratio <= 0)
error('Value of padratio must be positive.');
elseif (pow2(nextpow2(g.padratio)) ~= g.padratio)
error('Value of padratio must be an integer power of two [1,2,4,8,16,...]');
end
if (~isnumeric(g.maxfreq) || length(g.maxfreq)~=1)
error('Value of maxfreq must be a number.');
elseif (g.maxfreq <= 0)
error('Value of maxfreq must be positive.');
elseif (g.maxfreq > Fs/2)
myprintf(g.verbose,['Warning: value of maxfreq reduced to Nyquist rate' ...
' (%3.2f)\n\n'], Fs/2);
g.maxfreq = Fs/2;
end
if isempty(g.topovec)
g.topovec = [];
if isempty(g.elocs)
error('Channel location file must be specified.');
end
end
if isempty(g.elocs)
g.elocs = DEFAULT_ELOC;
elseif (~ischar(g.elocs)) && ~isstruct(g.elocs)
error('Channel location file must be a valid text file.');
end
if (~isnumeric(g.alpha) || length(g.alpha)~=1)
error('timef(): Value of g.alpha must be a number.\n');
elseif (round(g.naccu*g.alpha) < 2)
myprintf(g.verbose,'Value of g.alpha is out of the normal range [%g,0.5]\n',2/g.naccu);
g.naccu = round(2/g.alpha);
myprintf(g.verbose,' Increasing the number of bootstrap iterations to %d\n',g.naccu);
end
if g.alpha>0.5 || g.alpha<=0
error('Value of g.alpha is out of the allowed range (0.00,0.5).');
end
if ~isnan(g.alpha)
if g.baseboot > 0
myprintf(g.verbose,'Bootstrap analysis will use data in baseline (pre-0 centered) subwindows only.\n')
else
myprintf(g.verbose,'Bootstrap analysis will use data in all subwindows.\n')
end
end
if ~isnumeric(g.vert)
error('vertical line(s) option must be a vector');
else
if ~isempty(g.vert)
if min(g.vert(:)) < g.tlimits(1) || max(g.vert(:)) > g.tlimits(2)
error('vertical line(s) time out-of-bound');
end
end
end
if ~isnan (g.rboot)
if size(g.rboot) == [1,1]
if g.cycles == 0
g.rboot = g.rboot*ones(g.winsize*g.padratio/2);
end
end
end
if ~isempty(g.mtaper) % mutitaper, inspired from Bijan Pesaran matlab function
if length(g.mtaper) < 3
%error('mtaper argument must be [N W] or [N W K]');
if g.mtaper(1) * g.mtaper(2) < 1
error('mtaper 2 first arguments'' product must be higher than 1');
end
if length(g.mtaper) == 2
g.mtaper(3) = floor( 2*g.mtaper(2)*g.mtaper(1) - 1);
end
if length(g.mtaper) == 3
if g.mtaper(3) > 2 * g.mtaper(1) * g.mtaper(2) -1
error('mtaper number too high (maximum (2*N*W-1))');
end
end
disp(['Using ' num2str(g.mtaper(3)) ' tapers.']);
NW = g.mtaper(1)*g.mtaper(2); % product NW
N = g.mtaper(1)*g.srate;
[e,v] = dpss(N, NW, 'calc');
e=e(:,1:g.mtaper(3));
g.alltapers = e;
else
g.alltapers = g.mtaper;
disp('mtaper argument not [N W] or [N W K]; considering raw taper matrix');
end
g.winsize = size(g.alltapers, 1);
g.pad = max(pow2(nextpow2(g.winsize)),256); % pad*nextpow
%nfk = floor([0 g.maxfreq]./g.srate.*g.pad); % not used any more
%g.padratio = 2*nfk(2)/g.winsize;
g.padratio = g.pad/g.winsize;
%compute number of frequencies
%nf = max(256, g.pad*2^nextpow2(g.winsize+1));
%nfk = floor([0 g.maxfreq]./g.srate.*nf);
%freqs = linspace( 0, g.maxfreq, diff(nfk)); % this also work in the case of a FFT
end;
switch lower(g.plotphase)
case { 'on', 'off' }, ;
otherwise error('plotphase must be either on or off');
end
switch lower(g.plotersp)
case { 'on', 'off' }, ;
otherwise error('plotersp must be either on or off');
end
switch lower(g.plotitc)
case { 'on', 'off' }, ;
otherwise error('plotitc must be either on or off');
end
switch lower(g.detrep)
case { 'on', 'off' }, ;
otherwise error('detrep must be either on or off');
end
switch lower(g.detret)
case { 'on', 'off' }, ;
otherwise error('detret must be either on or off');
end
switch lower(g.phsamp)
case { 'on', 'off' }, ;
otherwise error('phsamp must be either on or off');
end
if ~isnumeric(g.linewidth)
error('linewidth must be numeric');
end
if ~isnumeric(g.naccu)
error('naccu must be numeric');
end
if ~isnumeric(g.baseline)
error('baseline must be numeric');
end
switch g.baseboot
case {0,1}, ;
otherwise, error('baseboot must be 0 or 1');
end
switch g.type
case { 'coher', 'phasecoher', 'phasecoher2' },;
otherwise error('Type must be either ''coher'' or ''phasecoher''');
end;
if isnan(g.baseline)
g.unitpower = 'uV/Hz';
else
g.unitpower = 'dB';
end
if (g.cycles == 0) %%%%%%%%%%%%%% constant window-length FFTs %%%%%%%%%%%%%%%%
freqs = linspace(0, g.srate/2, g.padratio*g.winsize/2+1);
freqs = freqs(2:end);
win = hanning(g.winsize);
P = zeros(g.padratio*g.winsize/2,g.timesout); % summed power
PP = zeros(g.padratio*g.winsize/2,g.timesout); % power
R = zeros(g.padratio*g.winsize/2,g.timesout); % mean coherence
RR = zeros(g.padratio*g.winsize/2,g.timesout); % (coherence)
Pboot = zeros(g.padratio*g.winsize/2,g.naccu); % summed bootstrap power
Rboot = zeros(g.padratio*g.winsize/2,g.naccu); % summed bootstrap coher
Rn = zeros(1,g.timesout);
Rbn = 0;
switch g.type
case { 'coher' 'phasecoher2' },
cumulX = zeros(g.padratio*g.winsize/2,g.timesout);
cumulXboot = zeros(g.padratio*g.winsize/2,g.naccu);
case 'phasecoher'
switch g.phsamp
case 'on'
cumulX = zeros(g.padratio*g.winsize/2,g.timesout);
end
end;
else % %%%%%%%%%%%%%%%%%% cycles>0, Constant-Q (wavelet) DFTs %%%%%%%%%%%%%%%%%%%%
freqs = g.srate*g.cycles/g.winsize*[2:2/g.padratio:g.winsize]/2;
dispf = find(freqs <= g.maxfreq);
freqs = freqs(dispf);
win = dftfilt(g.winsize,g.maxfreq/g.srate,g.cycles,g.padratio,g.cyclesfact);
P = zeros(size(win,2),g.timesout); % summed power
R = zeros(size(win,2),g.timesout); % mean coherence
PP = repmat(NaN,size(win,2),g.timesout); % initialize with NaN
RR = repmat(NaN,size(win,2),g.timesout); % initialize with NaN
Pboot = zeros(size(win,2),g.naccu); % summed bootstrap power
Rboot = zeros(size(win,2),g.naccu); % summed bootstrap coher
Rn = zeros(1,g.timesout);
Rbn = 0;
switch g.type
case { 'coher' 'phasecoher2' },
cumulX = zeros(size(win,2),g.timesout);
cumulXboot = zeros(size(win,2),g.naccu);
case 'phasecoher'
switch g.phsamp
case 'on'
cumulX = zeros(size(win,2),g.timesout);
end
end;
end
switch g.phsamp
case 'on'
PA = zeros(size(P,1),size(P,1),g.timesout); % NB: (freqs,freqs,times)
end % phs amp
wintime = 1000/g.srate*(g.winsize/2); % (1000/g.srate)*(g.winsize/2);
times = [g.tlimits(1)+wintime:(g.tlimits(2)-g.tlimits(1)-2*wintime)/(g.timesout-1):g.tlimits(2)-wintime];
ERPtimes = [g.tlimits(1):(g.tlimits(2)-g.tlimits(1))/(g.frames-1):g.tlimits(2)+0.000001];
ERPindices = [];
for ti=times
[tmp indx] = min(abs(ERPtimes-ti));
ERPindices = [ERPindices indx];
end
ERPtimes = ERPtimes(ERPindices); % subset of ERP frames on t/f window centers
if ~isempty(find(times < g.baseline))
baseln = find(times < g.baseline); % subtract means of pre-0 (centered) windows
else
baseln = 1:length(times); % use all times as baseline
end
if ~isnan(g.alpha) && length(baseln)==0
myprintf(g.verbose,'timef(): no window centers in baseline (times<%g) - shorten (max) window length.\n', g.baseline)
return
elseif ~isnan(g.alpha) && g.baseboot
myprintf(g.verbose,' %d bootstrap windows in baseline (center times < %g).\n',...
length(baseln), g.baseline)
end
dispf = find(freqs <= g.maxfreq);
stp = (g.frames-g.winsize)/(g.timesout-1);
myprintf(g.verbose,'Computing Event-Related Spectral Perturbation (ERSP) and\n');
switch g.type
case 'phasecoher', myprintf(g.verbose,' Inter-Trial Phase Coherence (ITC) images based on %d trials\n',length(X)/g.frames);
case 'phasecoher2', myprintf(g.verbose,' Inter-Trial Phase Coherence 2 (ITC) images based on %d trials\n',length(X)/g.frames);
case 'coher', myprintf(g.verbose,' Linear Inter-Trial Coherence (ITC) images based on %d trials\n',length(X)/g.frames);
end
myprintf(g.verbose,' of %d frames sampled at %g Hz.\n',g.frames,g.srate);
myprintf(g.verbose,'Each trial contains samples from %d ms before to\n',g.tlimits(1));
myprintf(g.verbose,' %.0f ms after the timelocking event.\n',g.tlimits(2));
myprintf(g.verbose,'The window size used is %d samples (%g ms) wide.\n',g.winsize,2*wintime);
myprintf(g.verbose,'The window is applied %d times at an average step\n',g.timesout);
myprintf(g.verbose,' size of %g samples (%g ms).\n',stp,1000*stp/g.srate);
myprintf(g.verbose,'Results are oversampled %d times; the %d frequencies\n',g.padratio,length(dispf));
myprintf(g.verbose,' displayed are from %2.1f Hz to %3.1f Hz.\n',freqs(dispf(1)),freqs(dispf(end)));
if ~isnan(g.alpha)
myprintf(g.verbose,'Only significant values (bootstrap p<%g) will be colored;\n',g.alpha)
myprintf(g.verbose,' non-significant values will be plotted in green\n');
end
trials = length(X)/g.frames;
baselength = length(baseln);
myprintf(g.verbose,'\nOf %d trials total, processing trial:',trials);
% detrend over epochs (trials) if requested
% -----------------------------------------
switch g.detrep
case 'on'
X = reshape(X, g.frames, length(X)/g.frames);
X = X - mean(X,2)*ones(1, length(X(:))/g.frames);
X = X(:)';
end;
for i=1:trials
if (rem(i,100)==0)
myprintf(g.verbose,'\n');
end
if (rem(i,10) == 0)
myprintf(g.verbose,'%d',i);
elseif (rem(i,2) == 0)
myprintf(g.verbose,'.');
end
ERP = blockave(X,g.frames); % compute the ERP trial average
Wn = zeros(1,g.timesout);
for j=1:g.timesout,
tmpX = X([1:g.winsize]+floor((j-1)*stp)+(i-1)*g.frames);
% pull out data g.frames
tmpX = tmpX - mean(tmpX); % remove the mean for that window
switch g.detret, case 'on', tmpX = detrend(tmpX); end
if ~any(isnan(tmpX))
if (g.cycles == 0) % FFT
if ~isempty(g.mtaper) % apply multitaper (no hanning window)
tmpXMT = fft(g.alltapers .* ...
(tmpX(:) * ones(1,size(g.alltapers,2))), g.pad);
%tmpXMT = tmpXMT(nfk(1)+1:nfk(2),:);
tmpXMT = tmpXMT(2:g.padratio*g.winsize/2+1,:);
PP(:,j) = mean(abs(tmpXMT).^2, 2);
% power; can also ponderate multitaper by their eigenvalues v
tmpX = win .* tmpX(:);
tmpX = fft(tmpX, g.pad);
tmpX = tmpX(2:g.padratio*g.winsize/2+1);
else
% TF and MC (12/2006): Calculation changes made so that
% power can be correctly calculated from ERSP.
tmpX = win .* tmpX(:);
tmpX = fft(tmpX,g.padratio*g.winsize);
tmpX = tmpX / g.winsize; % TF and MC (12/11/2006): normalization, divide by g.winsize
tmpX = tmpX(2:g.padratio*g.winsize/2+1);
PP(:,j) = 2/0.375*abs(tmpX).^2; % power
% TF and MC (12/14/2006): multiply by 2 account for negative frequencies,
% Counteract the reduction by a factor 0.375
% that occurs as a result of cosine (Hann) tapering. Refer to Bug 446
end;
else % wavelet
if ~isempty(g.mtaper) % apply multitaper
tmpXMT = g.alltapers .* (tmpX(:) * ones(1,size(g.alltapers,2)));
tmpXMT = transpose(win) * tmpXMT;
PP(:,j) = mean(abs(tmpXMT).^2, 2); % power
tmpX = transpose(win) * tmpX(:);
else
tmpX = transpose(win) * tmpX(:);
PP(:,j) = abs(tmpX).^2; % power
end
end
if abs(tmpX) < eps % If less than smallest possible machine value
% (i.e. if it's zero) then call it 0.
RR(:,j) = zeros(size(RR(:,j)));
else
switch g.type
case { 'coher' },
RR(:,j) = tmpX;
cumulX(:,j) = cumulX(:,j)+abs(tmpX).^2;
case { 'phasecoher2' },
RR(:,j) = tmpX;
cumulX(:,j) = cumulX(:,j)+abs(tmpX);
case 'phasecoher',
RR(:,j) = tmpX ./ abs(tmpX); % normalized cross-spectral vector
switch g.phsamp
case 'on'
cumulX(:,j) = cumulX(:,j)+abs(tmpX); % accumulate for PA
end
end
end
Wn(j) = 1;
end
switch g.phsamp
case 'on' % PA (freq x freq x time)
PA(:,:,j) = PA(:,:,j) + (tmpX ./ abs(tmpX)) * ((PP(:,j)))';
% cross-product: unit phase (column)
% times amplitude (row)
end
end % window
if ~isnan(g.alpha) % save surrogate data for bootstrap analysis
j = 1;
goodbasewins = find(Wn==1);
if g.baseboot % use baseline windows only
goodbasewins = find(goodbasewins<=baselength);
end
ngdbasewins = length(goodbasewins);
if ngdbasewins>1
while j <= g.naccu
i=ceil(rand*ngdbasewins);
i=goodbasewins(i);
Pboot(:,j) = Pboot(:,j) + PP(:,i);
Rboot(:,j) = Rboot(:,j) + RR(:,i);
switch g.type
case 'coher', cumulXboot(:,j) = cumulXboot(:,j)+abs(tmpX).^2;
case 'phasecoher2', cumulXboot(:,j) = cumulXboot(:,j)+abs(tmpX);
end
j = j+1;
end
Rbn = Rbn + 1;
end
end % bootstrap
Wn = find(Wn>0);
if length(Wn)>0
P(:,Wn) = P(:,Wn) + PP(:,Wn); % add non-NaN windows
R(:,Wn) = R(:,Wn) + RR(:,Wn);
Rn(Wn) = Rn(Wn) + ones(1,length(Wn)); % count number of addends
end
end % trial
% if coherence, perform the division
% ----------------------------------
switch g.type
case 'coher',
R = R ./ ( sqrt( trials*cumulX ) );
if ~isnan(g.alpha)
Rboot = Rboot ./ ( sqrt( trials*cumulXboot ) );
end
case 'phasecoher2',
R = R ./ ( cumulX );
if ~isnan(g.alpha)
Rboot = Rboot ./ cumulXboot;
end;
case 'phasecoher',
R = R ./ (ones(size(R,1),1)*Rn);
end;
switch g.phsamp
case 'on'
tmpcx(1,:,:) = cumulX; % allow ./ below
for j=1:g.timesout
PA(:,:,j) = PA(:,:,j) ./ repmat(PP(:,j)', [size(PP,1) 1]);
end
end
if min(Rn) < 1
myprintf(g.verbose,'timef(): No valid timef estimates for windows %s of %d.\n',...
int2str(find(Rn==0)),length(Rn));
Rn(find(Rn<1))==1;
return
end
P = P ./ (ones(size(P,1),1) * Rn);
if isnan(g.powbase)
myprintf(g.verbose,'\nComputing the mean baseline spectrum\n');
mbase = mean(P(:,baseln),2)';
else
myprintf(g.verbose,'Using the input baseline spectrum\n');
mbase = g.powbase;
end
if ~isnan( g.baseline(1) ) && ~isnan( mbase(1) )
P = 10 * (log10(P) - repmat(log10(mbase(1:size(P,1)))',[1 g.timesout])); % convert to (10log10) dB
else
P = 10 * log10(P);
end
Rsign = sign(imag(R));
if nargout > 7
for lp = 1:size(R,1)
Rphase(lp,:) = rem(angle(R(lp,:)),2*pi); % replaced obsolete phase() -sm 2/1/6
end
Rphase(find(Rphase>pi)) = 2*pi-Rphase(find(Rphase>pi));
Rphase(find(Rphase<-pi)) = -2*pi-Rphase(find(Rphase<-pi));
end
R = abs(R); % convert coherence vector to magnitude
if ~isnan(g.alpha) % if bootstrap analysis included . . .
if Rbn>0
i = round(g.naccu*g.alpha);
if isnan(g.pboot)
Pboot = Pboot / Rbn; % normalize
if ~isnan( g.baseline )
Pboot = 10 * (log10(Pboot) - repmat(log10(mbase)',[1 g.naccu]));
else
Pboot = 10 * log10(Pboot);
end;
Pboot = sort(Pboot');
Pboot = [mean(Pboot(1:i,:)) ; mean(Pboot(g.naccu-i+1:g.naccu,:))];
else
Pboot = g.pboot;
end
if isnan(g.rboot)
Rboot = abs(Rboot) / Rbn;
Rboot = sort(Rboot');
Rboot = mean(Rboot(g.naccu-i+1:g.naccu,:));
else
Rboot = g.rboot;
end
else
myprintf(g.verbose,'No valid bootstrap trials...!\n');
end
end
switch lower(g.plotitc)
case 'on',
switch lower(g.plotersp),
case 'on', ordinate1 = 0.67; ordinate2 = 0.1; height = 0.33; g.plot = 1;
case 'off', ordinate2 = 0.1; height = 0.9; g.plot = 1;
end;
case 'off', ordinate1 = 0.1; height = 0.9;
switch lower(g.plotersp),
case 'on', ordinate1 = 0.1; height = 0.9; g.plot = 1;
case 'off', g.plot = 0;
end;
end;
if g.plot
myprintf(g.verbose,'\nNow plotting...\n');
set(gcf,'DefaultAxesFontSize',AXES_FONT)
colormap(jet(256));
pos = get(gca,'position');
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)];
end
switch lower(g.plotersp)
case 'on'
%
%%%%%%% image the ERSP %%%%%%%%%%%%%%%%%%%%%%%%%%
%
h(1) = subplot('Position',[.1 ordinate1 .9 height].*s+q);
PP = P; % PP will be ERSP power after
if ~isnan(g.alpha) % zero out nonsignif. power differences
PP(find((PP > repmat(Pboot(1,:)',[1 g.timesout])) ...
& (PP < repmat(Pboot(2,:)',[1 g.timesout])))) = 0;
end
if ERSP_CAXIS_LIMIT == 0
ersp_caxis = [-1 1]*1.1*max(max(abs(P(dispf,:))));
else
ersp_caxis = ERSP_CAXIS_LIMIT*[-1 1];
end
if ~isnan( g.baseline )
imagesc(times,freqs(dispf),PP(dispf,:),ersp_caxis);
else
imagesc(times,freqs(dispf),PP(dispf,:));
end
set(gca,'ydir',g.hzdir); % make frequency ascend or descend
if ~isempty(g.erspmax)
caxis([-g.erspmax g.erspmax]);
end
hold on
plot([0 0],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth); % plot time 0
if ~isnan(g.marktimes) % plot marked time
for mt = g.marktimes(:)'
plot([mt mt],[0 freqs(max(dispf))],'--k','LineWidth',g.linewidth);
end
end
hold off
set(h(1),'YTickLabel',[],'YTick',[])
set(h(1),'XTickLabel',[],'XTick',[])
if ~isempty(g.vert)
for index = 1:length(g.vert)
line([g.vert(index), g.vert(index)], [min(freqs(dispf)) max(freqs(dispf))], 'linewidth', 1, 'color', 'm');
end
end
h(2) = gca;
h(3) = cbar('vert'); % ERSP colorbar axes
set(h(2),'Position',[.1 ordinate1 .8 height].*s+q)
set(h(3),'Position',[.95 ordinate1 .05 height].*s+q)
title([ 'ERSP(' g.unitpower ')' ])
E = [min(P(dispf,:));max(P(dispf,:))];
h(4) = subplot('Position',[.1 ordinate1-0.1 .8 .1].*s+q); % plot marginal ERSP means
% below the ERSP image
plot(times,E,[0 0],...
[min(E(1,:))-max(max(abs(E)))/3 max(E(2,:))+max(max(abs(E)))/3], ...
'--m','LineWidth',g.linewidth)
axis([min(times) max(times) ...
min(E(1,:))-max(max(abs(E)))/3 max(E(2,:))+max(max(abs(E)))/3])
tick = get(h(4),'YTick');
set(h(4),'YTick',[tick(1) ; tick(end)])
set(h(4),'YAxisLocation','right')
set(h(4),'TickLength',[0.020 0.025]);
xlabel('Time (ms)')
ylabel( g.unitpower )
E = 10 * log10(mbase(dispf));
h(5) = subplot('Position',[0 ordinate1 .1 height].*s+q); % plot mean spectrum
% to left of ERSP image
plot(freqs(dispf),E,'LineWidth',g.linewidth)
if ~isnan(g.alpha)
hold on;
plot(freqs(dispf),Pboot(:,dispf)+[E;E],'g', 'LineWidth',g.linewidth);
plot(freqs(dispf),Pboot(:,dispf)+[E;E],'k:','LineWidth',g.linewidth)
end
axis([freqs(1) freqs(max(dispf)) min(E)-max(abs(E))/3 max(E)+max(abs(E))/3])
tick = get(h(5),'YTick');
if (length(tick)>1)
set(h(5),'YTick',[tick(1) ; tick(end-1)])
end
set(h(5),'TickLength',[0.020 0.025]);
set(h(5),'View',[90 90])
xlabel('Frequency (Hz)')
ylabel( g.unitpower )
if strcmp(g.hzdir,'normal')
freqdir = 'reverse';
else
freqdir = 'normal';
end
set(h(5),'xdir',freqdir); % make frequency ascend or descend
end
switch lower(g.plotitc)
case 'on'
%
%%%%%%%%%%%% Image the ITC %%%%%%%%%%%%%%%%%%
%
h(6) = subplot('Position',[.1 ordinate2 .9 height].*s+q); % ITC image
RR = R; % RR is the masked ITC (R)
if ~isnan(g.alpha)
RR(find(RR < repmat(Rboot(1,:)',[1 g.timesout]))) = 0;
end
if ITC_CAXIS_LIMIT == 0
coh_caxis = min(max(max(R(dispf,:))),1)*[-1 1]; % 1 WAS 0.4 !
else
coh_caxis = ITC_CAXIS_LIMIT*[-1 1];
end
if exist('Rsign') && strcmp(g.plotphase, 'on')
imagesc(times,freqs(dispf),Rsign(dispf,:).*RR(dispf,:),coh_caxis); % <---
else
imagesc(times,freqs(dispf),RR(dispf,:),coh_caxis); % <---
end
if ~isempty(g.itcmax)
caxis([-g.itcmax g.itcmax]);
end
tmpcaxis = caxis;
set(gca,'ydir',g.hzdir); % make frequency ascend or descend
hold on
plot([0 0],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth);
if ~isnan(g.marktimes)
for mt = g.marktimes(:)'
plot([mt mt],[0 freqs(max(dispf))],'--k','LineWidth',g.linewidth);
end
end
hold off
set(h(6),'YTickLabel',[],'YTick',[])
set(h(6),'XTickLabel',[],'XTick',[])
if ~isempty(g.vert)
for index = 1:length(g.vert)
line([g.vert(index), g.vert(index)], ...
[min(freqs(dispf)) max(freqs(dispf))], ...
'linewidth', 1, 'color', 'm');
end
end
h(7) = gca;
h(8) = cbar('vert');
%h(9) = get(h(8),'Children');
set(h(7),'Position',[.1 ordinate2 .8 height].*s+q)
set(h(8),'Position',[.95 ordinate2 .05 height].*s+q)
set(h(8),'YLim',[0 tmpcaxis(2)]);
title('ITC')
%
%%%%% plot the ERP below the ITC image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% E = mean(R(dispf,:));
ERPmax = max(ERP);
ERPmin = min(ERP);
ERPmax = ERPmax + 0.1*(ERPmax-ERPmin);
ERPmin = ERPmin - 0.1*(ERPmax-ERPmin);
h(10) = subplot('Position',[.1 ordinate2-0.1 .8 .1].*s+q); % ERP
plot(ERPtimes,ERP(ERPindices),...
[0 0],[ERPmin ERPmax],'--m','LineWidth',g.linewidth);
hold on; plot([times(1) times(length(times))],[0 0], 'k');
axis([min(ERPtimes) max(ERPtimes) ERPmin ERPmax]);
tick = get(h(10),'YTick');
set(h(10),'YTick',[tick(1) ; tick(end)])
set(h(10),'TickLength',[0.02 0.025]);
set(h(10),'YAxisLocation','right')
xlabel('Time (ms)')
ylabel('\muV')
if (~isempty(g.topovec))
if length(g.topovec) ~= 1, ylabel(''); end; % ICA component
end
E = mean(R(dispf,:)');
h(11) = subplot('Position',[0 ordinate2 .1 height].*s+q); % plot the marginal mean
% ITC left of the ITC image
if ~isnan(g.alpha)
plot(freqs(dispf),E,'LineWidth',g.linewidth); hold on;
plot(freqs(dispf),Rboot(dispf),'g', 'LineWidth',g.linewidth);
plot(freqs(dispf),Rboot(dispf),'k:','LineWidth',g.linewidth);
axis([freqs(1) freqs(max(dispf)) 0 max([E Rboot(dispf)])+max(E)/3])
else
plot(freqs(dispf),E,'LineWidth',g.linewidth)
axis([freqs(1) freqs(max(dispf)) min(E)-max(E)/3 max(E)+max(E)/3])
end
tick = get(h(11),'YTick');
set(h(11),'YTick',[tick(1) ; tick(length(tick))])
set(h(11),'View',[90 90])
set(h(11),'TickLength',[0.020 0.025]);
xlabel('Frequency (Hz)')
ylabel('ERP')
if strcmp(g.hzdir,'normal')
freqdir = 'reverse';
else
freqdir = 'normal';
end
set(gca,'xdir',freqdir); % make frequency ascend or descend
%
%%%%%%%%%%%%%%% plot a topoplot() %%%%%%%%%%%%%%%%%%%%%%%
%
if (~isempty(g.topovec))
h(12) = subplot('Position',[-.1 .43 .2 .14].*s+q);
if length(g.topovec) == 1
topoplot(g.topovec,g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10, 'chaninfo', g.chaninfo);
else
topoplot(g.topovec,g.elocs,'electrodes','off', 'chaninfo', g.chaninfo);
end
axis('square')
end
end; % switch
if g.plot
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end
if (length(g.title) > 0)
axes('Position',pos,'Visible','Off');
h(13) = text(-.05,1.01,g.title);
set(h(13),'VerticalAlignment','bottom')
set(h(13),'HorizontalAlignment','left')
set(h(13),'FontSize',TITLE_FONT);
end
axcopy(gcf);
end
% symmetric Hanning tapering function
% -----------------------------------
function w = hanning(n)
if ~rem(n,2)
w = .5*(1 - cos(2*pi*(1:n/2)'/(n+1)));
w = [w; w(end:-1:1)];
else
w = .5*(1 - cos(2*pi*(1:(n+1)/2)'/(n+1)));
w = [w; w(end-1:-1:1)];
end
function myprintf(verbose, varargin)
if strcmpi(verbose, 'on')
fprintf(varargin{:});
end