Download this file

197 lines (178 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
% RSFIT - find p value for a given value in a given distribution
% using Ramberg-Schmeiser distribution
%
% Usage: >> p = rsfit(x, val)
% >> [p c l chi2] = rsfit(x, val, plot)
%
% Input:
% x - [float array] accumulation values
% val - [float] value to test
% plot - [0|1|2] plot fit. Using 2, the function avoids creating
% a new figure. Default: 0.
%
% Output:
% p - p value
% c - [mean var skewness kurtosis] distribution cumulants
% l - [4x float vector] Ramberg-Schmeiser distribution best fit
% parameters.
% chi2 - [float] chi2 for goodness of fit (based on 12 bins).
% Fit is significantly different from data histogram if
% chi2 > 19 (5%)
%
% Author: Arnaud Delorme, SCCN, 2003
%
% See also: RSADJUST, RSGET, RSPDFSOLV, RSPFUNC
%
% Reference: Ramberg, J.S., Tadikamalla, P.R., Dudewicz E.J., Mykkytka, E.F.
% A probability distribution and its uses in fitting data.
% Technimetrics, 1979, 21: 201-214.
% Copyright (C) 2003 Arnaud Delorme, SCCN, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [p, c, l, res] = rsfit(x, val, plotflag)
if nargin < 2
help rsfit;
return;
end
if nargin < 3
plotflag = 0;
end
% moments
% -------
m1 = mean(x);
m2 = sum((x-m1).^2)/length(x);
m3 = sum((x-m1).^3)/length(x);
m4 = sum((x-m1).^4)/length(x);
xmean = m1;
xvar = m2;
xskew = m3/(m2^1.5);
xkurt = m4/(m2^2);
c = [ xmean xvar xskew xkurt ];
if xkurt < 0
disp('rsfit error: Can not fit negative kurtosis');
save('/home/arno/temp/dattmp.mat', '-mat', 'x');
disp('data saved to disk in /home/arno/temp/dattmp.mat');
end
% find fit
% --------
try,
[sol tmp exitcode] = fminsearch('rspdfsolv', [0.1 0.1], optimset('TolX',1e-12, 'MaxFunEvals', 100000000), abs(xskew), xkurt);
catch, exitcode = 0; % did not converge
end
if ~exitcode
try, [sol tmp exitcode] = fminsearch('rspdfsolv', -[0.1 0.1], optimset('TolX',1e-12, 'MaxFunEvals', 100000000), abs(xskew), xkurt);
catch, exitcode = 0; end
end
if ~exitcode, error('No convergence'); end
if sol(2)*sol(1) == -1, error('Wrong sign for convergence'); end
%fprintf(' l-val:%f\n', sol);
res = rspdfsolv(sol, abs(xskew), xkurt);
l3 = sol(1);
l4 = sol(2);
%load res;
%[tmp indalpha3] = min( abs(rangealpha3 - xskew) );
%[tmp indalpha4] = min( abs(rangealpha4 - xkurt) );
%l3 = res(indalpha3,indalpha4,1);
%l4 = res(indalpha3,indalpha4,2);
%res = res(indalpha3,indalpha4,3);
% adjust fit
% ----------
[l1 l2 l3 l4] = rsadjust(l3, l4, xmean, xvar, xskew);
l = [l1 l2 l3 l4];
p = rsget(l, val);
% compute goodness of fit
% -----------------------
if nargout > 3 || plotflag
% histogram of value 12 bins
% --------------------------
[N X] = hist(x, 25);
interval = X(2)-X(1);
X = [X-interval/2 X(end)+interval/2]; % borders
% regroup bin with less than 5 values
% -----------------------------------
indices2rm = [];
for index = 1:length(N)-1
if N(index) < 5
N(index+1) = N(index+1) + N(index);
indices2rm = [ indices2rm index];
end
end
N(indices2rm) = [];
X(indices2rm+1) = [];
indices2rm = [];
for index = length(N):-1:2
if N(index) < 5
N(index-1) = N(index-1) + N(index);
indices2rm = [ indices2rm index];
end
end
N(indices2rm) = [];
X(indices2rm) = [];
% compute expected values
% -----------------------
for index = 1:length(X)-1
p1 = rsget( l, X(index+1));
p2 = rsget( l, X(index ));
expect(index) = length(x)*(p1-p2);
end
% value of X2
% -----------
res = sum(((expect - N).^2)./expect);
% plot fit
% --------
if plotflag
if plotflag ~= 2, figure('paperpositionmode', 'auto'); end
hist(x, 10);
% plot fit
% --------
xdiff = X(end)-X(1);
abscisia = linspace(X(1)-0.2*xdiff, X(end)+0.2*xdiff, 100);
%abscisia = (X(1:end-1)+X(2:end))/2;
expectplot = zeros(1,length(abscisia)-1);
for index = 2:length(abscisia);
p1 = rsget( l, abscisia(index-1));
p2 = rsget( l, abscisia(index ));
expectplot(index-1) = length(x)*(p2-p1);
% have to do this subtraction since this a cumulate density distribution
end
abscisia = (abscisia(2:end)+abscisia(1:end-1))/2;
hold on; plot(abscisia, expectplot, 'r');
% plot PDF
% ----------
pval = linspace(0,1, 102); pval(1) = []; pval(end) = [];
rp = l(1) + (pval.^l(3) - (1-pval).^l(4))/l(2);
fp = l(2)*1./(l(3).*(pval.^(l(3)-1)) + l(4).*((1-pval).^(l(4)-1)));
[maxval index] = max(expect);
[tmp closestind] = min(abs(rp - abscisia(index)));
fp = fp./fp(closestind)*maxval;
plot(rp, fp, 'g');
legend('Chi2 fit (some bins have been grouped)', 'Pdf', 'Data histogram' );
xlabel('Bins');
ylabel('# of data point per bin');
title (sprintf('Fit of distribution using Ramberg-Schmeiser distribution (Chi2 = %2.4g)', res));
end
end
return