[422372]: / functions / timefreqfunc / pac_cont.m

Download this file

431 lines (391 with data), 18.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
% PAC_CONT - compute phase-amplitude coupling (power of first input
% correlation with phase of second). There is no graphical output
% to this function.
%
% Usage:
% >> pac_cont(x,y,srate);
% >> [pac timesout pvals] = pac_cont(x,y,srate,'key1', 'val1', 'key2', val2' ...);
%
% Inputs:
% x = [float array] 1-D data vector of size (1xtimes)
% y = [float array] 1-D data vector of size (1xtimes)
% srate = data sampling rate (Hz)
%
% Optional time information inputs:
% 'winsize' = If cycles==0: data subwindow length (fastest, 2^n<frames);
% If cycles >0: *longest* window length to use. This
% determines the lowest output frequency. Note that this
% parameter is overwritten if the minimum frequency has been set
% manually and requires a longer time window {~frames/8}
% 'ntimesout' = Number of output times (int<frames-winframes). Enter a
% negative value [-S] to subsample original time by S.
% 'timesout' = Enter an array to obtain spectral decomposition at
% specific time values (note: algorithm find closest time
% point in data and this might result in an unevenly spaced
% time array). Overwrite 'ntimesout'. {def: automatic}
% 'tlimits' = [min max] time limits in ms.
%
% Optional PAC inputs:
% 'method' = ['modulation'|'plv'|'corr'|'glm'] (see reference).
% 'freqphase' = [min max] frequency limits. Default [minfreq 50],
% minfreq being determined by the number of data points,
% cycles and sampling frequency. Use 0 for minimum frequency
% to compute default minfreq. You may also enter an
% array of frequencies for the spectral decomposition
% (for FFT, closest computed frequency will be returned; use
% 'padratio' to change FFT freq. resolution).
% 'freqamp' = [float array] array of frequencies for the second
% argument. 'freqs' is used for the first argument.
% By default it is the same as 'freqs'.
% 'filterfunc' = ['eegfilt'|'iirfilt'|'eegfftfilt'] filtering function.
% Default is iirfilt. Warning, filtering may dramatically
% affect the result. With the 'corr' method, make sure you
% have a large window size because each window is filtered
% independently.
% 'filterphase' = @f_handle. Function handle to filter the data for the
% phase information. For example, @(x)iirfilt(x, 1000, 2,
% 20). Note that 'freqphase' is ignore in this case.
% 'filteramp' = @f_handle. Function handle to filter the data for the
% amplitude information. Note that 'freqamp' is ignore in
% this case.
%
% Inputs for statistics:
% 'alpha' = [float] p-value threshold. Default is none (no statistics).
% 'mcorrect' = ['none'|'fdr'] method to correct for multiple comparison.
% Default is 'none'.
% 'baseline' = [min max] baseline period for the Null distribution. Default
% is the whole data range. Note that this option is ignored
% for instanstaneous statistics.
% 'instantstat' = ['on'|'off'] performs statistics for each time window
% independently. Default is 'off'.
% 'naccu' = [integer] number of accumulations for surrogate
% statistics.
% 'statlim' = ['parametric'|'surrogate'] use a parametric methods to
% asseess the limit of the surrogate distribution or use
% the tail of the distribution ('surrogate' method)
%
% Other inputs:
% 'title' = [string] figure title. Default is none.
% 'vert' = [float array] array of time value for which to plot
% vertical lines. Default is none.
%
% Outputs:
% pac = Phase-amplitude coupling values.
% timesout = vector of time indices
% pvals = Associated p-values
%
% Author: Arnaud Delorme and Makoto Miyakoshi, SCCN/INC, UCSD 2012-
%
% References:
% Methods used here are introduced and compared in:
% Penny, Duzel, Miller, Ojemann. (20089). Testing for Nested Oscilations.
% J Neuro Methods. 174:50-61
%
% Modulation Index is defined in:
% Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, et al. (2006). Modulation index is defined in High Gamma Power Is Phase-Locked to Theta
% Oscillations in Human Neocortex. Science. 313:1626-8.
%
% PLV (Phase locking value) is defined in:
% Lachaux, Rodriguez, Martiniere, Varela. (1999). Measuring phase synchrony
% in brain signal. Hum Brain Mapp. 8:194-208.
%
% corr (correlation) method is defined in:
% Brunce, Eckhorn. (2004). Task-related coupling from high- to
% low-frequency signals among visual cortical areas in human subdural
% recordings. Int J Psychophysiol. 51:97-116.
%
% glm (general linear model) is defined in
% Penny, Duzel, Miller, Ojemann. (20089). Testing for Nested Oscilations.
% J Neuro Methods. 174:50-61
% Copyright (C) 2012 Arnaud Delorme, UCSD
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [m_raw pvals indexout] = pac_cont(X, Y, srate, varargin);
if nargin < 1
help pac_cont;
return;
end
% deal with 3-D inputs
% --------------------
if ndims(X) == 3 || ndims(Y) == 3, error('Cannot process 3-D input'); end
if size(X,1) > 1, X = X'; end
if size(Y,1) > 1, Y = Y'; end
if size(X,1) ~= 1 || size(Y,1) ~= 1, error('Cannot only process vector input'); end
frame = size(X,2);
pvals = [];
g = finputcheck(varargin, ...
{ ...
'alpha' 'real' [0 0.2] [];
'baseline' 'float' [] [];
'freqphase' 'real' [0 Inf] [0 srate/2];
'freqamp' 'real' [0 Inf] [];
'mcorrect' 'string' { 'none' 'fdr' } 'none';
'method' 'string' { 'plv' 'modulation' 'glm' 'corr' } 'modulation';
'naccu' 'integer' [1 Inf] 250;
'instantstat' 'string' {'on','off'} 'off';
'newfig' 'string' {'on','off'} 'on';
'nofig' 'string' {'on','off'} 'off';
'statlim' 'string' {'surrogate','parametric'} 'parametric';
'timesout' 'real' [] []; ...
'filterfunc' 'string' { 'eegfilt' 'iirfilt' 'eegfiltfft' } 'eegfiltfft'; ...
'filterphase' '' {} [];
'filteramp' '' {} [];
'ntimesout' 'integer' [] 200; ...
'tlimits' 'real' [] [0 frame/srate];
'title' 'string' [] '';
'vert' 'real' [] [];
'winsize' 'integer' [0 Inf] max(pow2(nextpow2(frame)-3),4) }, 'pac');
if ischar(g), error(g); end
if ~isempty(g.filterphase)
x_freqphase = feval(g.filterphase, X(:)');
else x_freqphase = feval(g.filterfunc, X(:)', srate, g.freqphase(1), g.freqphase(end));
end
if ~isempty(g.filteramp)
x_freqamp = feval(g.filteramp, Y(:)');
else x_freqamp = feval(g.filterfunc, Y(:)', srate, g.freqamp( 1), g.freqamp( end));
end
z_phasedata = hilbert(x_freqphase);
z_ampdata = hilbert(x_freqamp);
phase = angle(z_phasedata);
amplitude = abs( z_ampdata);
z = amplitude.*exp(i*phase); % this is the pac measure
% get time windows
% ----------------
g.verbose = 'on';
g.causal = 'off';
[ timesout1 indexout ] = gettimes(frame, g.tlimits, g.timesout, g.winsize, g.ntimesout, g.causal, g.verbose);
% scan time windows
% -----------------
if ~isempty(g.alpha)
m_raw = zeros(1,length(indexout));
pvals = zeros(1,length(indexout));
end
fprintf('Computing PAC:\n');
for iWin = 1:length(indexout)
x_phaseEpoch = x_freqphase(indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
x_ampEpoch = x_freqamp( indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
z_phaseEpoch = z_phasedata(indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
z_ampEpoch = z_ampdata( indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
z_epoch = z( indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
numpoints=length(x_phaseEpoch);
if rem(iWin,10) == 0, verboseprintf(g.verbose, ' %d',iWin); end
if rem(iWin,120) == 0, verboseprintf(g.verbose, '\n'); end
% Choose method
% -------------
if strcmpi(g.method, 'modulation')
% Modulation index
m_raw(iWin) = abs(sum(z_epoch))/numpoints;
elseif strcmpi(g.method, 'plv')
if iWin == 145
%dsfsd;
end
%amplitude_filt = sgolayfilt(amplitude, 3, 101);
if ~isempty(g.filterphase)
amplitude_filt = feval(g.filterphase, z_ampEpoch);
else amplitude_filt = feval(g.filterfunc , z_ampEpoch, srate, g.freqphase(1), g.freqphase(end));
end
z_amplitude_filt = hilbert(amplitude_filt);
phase_amp_modulation = angle(z_amplitude_filt);
m_raw(iWin) = abs(sum(exp(i*(x_phaseEpoch - phase_amp_modulation)))/numpoints);
elseif strcmpi(g.method, 'corr')
if iWin == inf %145
figure; plot(abs(z_ampdata))
hold on; plot(x_phasedata/10000000000, 'r')
x = X(indexout(iWin)+[-g.winsize/2+1:g.winsize/2]);
hold on; plot(x, 'g');
dsfsd;
end
[r_ESC pval_corr] = corrcoef(x_phaseEpoch, abs(z_ampEpoch));
m_raw(iWin) = r_ESC(1,2);
pvals(iWin) = pval_corr(1,2);
elseif strcmpi(g.method, 'glm')
[b dev stats] = glmfit(x_phaseEpoch', abs(z_ampEpoch)', 'normal');
GLM_beta = stats.beta(2,1);
pvals(iWin) = stats.p(2,1);
m_raw(iWin) = b(1);
end
%% compute statistics (instantaneous)
% -----------------------------------
if ~isempty(g.alpha) && strcmpi(g.instantstat, 'on') && ~strcmpi(g.method, 'corr') && ~strcmpi(g.method, 'glm')
% compute surrogate values
numsurrogate=g.naccu;
minskip=srate;
maxskip=numpoints-srate; % max variation half a second
if maxskip < 1
error('Window size shorter than 1 second; too short for computing surrogate data');
end
skip=ceil(numpoints.*rand(numsurrogate*4,1));
skip(skip>maxskip)=[];
skip(skip<minskip)=[];
skip=skip(1:numsurrogate,1);
surrogate_m=zeros(numsurrogate,1);
for s=1:numsurrogate
surrogate_amplitude=[amplitude(skip(s):end) amplitude(1:skip(s)-1)]; % consider circular shifts
surrogate_m(s)=abs(mean(surrogate_amplitude.*exp(i*phase)));
%disp(numsurrogate-s)
end
if strcmpi(g.statlim, 'surrogate')
pvals(iWin) = stat_surrogate_pvals(surrogate_m, m_raw(iWin), 'upper');
%fprintf('Raw PAC is %3.2f (p-value=%1.3f)\n', m_raw(iWin), pvals(iWin));
else
% Canolty method below
%% fit gaussian to surrogate data, uses normfit.m from MATLAB Statistics toolbox
[surrogate_mean,surrogate_std]=normfit(surrogate_m);
%% normalize length using surrogate data (z-score)
m_norm_length=(abs(m_raw(iWin))-surrogate_mean)/surrogate_std;
pvals(iWin) = normcdf(0, m_norm_length, 1);
m_norm_phase=angle(m_raw(iWin));
m_norm=m_norm_length*exp(i*m_norm_phase);
% compare parametric and non-parametric methods (return similar
% results)
if iWin == length(indexout)
figure;
plot(-log10(pvals));
hold on; plot(-log10(pvals2), 'r');
end
end
end
end
fprintf('\n');
% Computes alpha
% --------------
if ~isempty(g.alpha) && strcmpi(g.instantstat, 'off')
if isempty(g.baseline)
g.baseline = [ timesout1(1) timesout1(end) ];
end
baselineInd = find(timesout1 >= g.baseline(1) & timesout1 <= g.baseline(end));
m_raw_base = abs(m_raw(baselineInd));
if strcmpi(g.statlim, 'surrogate')
for index = 1:length(m_raw)
pvals(index) = stat_surrogate_pvals(m_raw_base, m_raw(index), 'upper');
end
else
[surrogate_mean,surrogate_std]=normfit(m_raw_base);
m_norm_length=(abs(m_raw)-surrogate_mean)/surrogate_std;
pvals = normcdf(0, m_norm_length, 1);
end
if strcmpi(g.mcorrect, 'fdr')
pvals = fdr(pvals);
end
end
%% plot results
% -------------
if strcmpi(g.nofig, 'on')
return
end
if strcmpi(g.newfig, 'on')
figure;
end
if ~isempty(g.alpha)
plotcurve(timesout1, m_raw, 'maskarray', pvals < g.alpha);
else plotcurve(timesout1, m_raw);
end
xlabel('Time (ms)');
ylabel('PAC (0 to 1)');
title(g.title);
% plot vertical lines
% -------------------
if ~isempty(g.vert)
hold on;
yl = ylim;
for index = 1:length(g.vert)
plot([g.vert(index) g.vert(index)], yl, 'g');
end
end
% -------------
% gettime function identical to timefreq function
% DO NOT MODIFY
% -------------
function [ timevals, timeindices ] = gettimes(frames, tlimits, timevar, winsize, ntimevar, causal, verbose);
timevect = linspace(tlimits(1), tlimits(2), frames);
srate = 1000*(frames-1)/(tlimits(2)-tlimits(1));
if isempty(timevar) % no pre-defined time points
if ntimevar(1) > 0
% generate linearly space vector
% ------------------------------
if (ntimevar > frames-winsize)
ntimevar = frames-winsize;
if ntimevar < 0
error('Not enough data points, reduce the window size or lowest frequency');
end
verboseprintf(verbose, ['Value of ''timesout'' must be <= frame-winsize, ''timesout'' adjusted to ' int2str(ntimevar) '\n']);
end
npoints = ntimevar(1);
wintime = 500*winsize/srate;
if strcmpi(causal, 'on')
timevals = linspace(tlimits(1)+2*wintime, tlimits(2), npoints);
else timevals = linspace(tlimits(1)+wintime, tlimits(2)-wintime, npoints);
end
verboseprintf(verbose, 'Generating %d time points (%1.1f to %1.1f ms)\n', npoints, min(timevals), max(timevals));
else
% subsample data
% --------------
nsub = -ntimevar(1);
if strcmpi(causal, 'on')
timeindices = [ceil(winsize+nsub):nsub:length(timevect)];
else timeindices = [ceil(winsize/2+nsub/2):nsub:length(timevect)-ceil(winsize/2)-1];
end
timevals = timevect( timeindices ); % the conversion at line 741 leaves timeindices unchanged
verboseprintf(verbose, 'Subsampling by %d (%1.1f to %1.1f ms)\n', nsub, min(timevals), max(timevals));
end
else
timevals = timevar;
% check boundaries
% ----------------
wintime = 500*winsize/srate;
if strcmpi(causal, 'on')
tmpind = find( (timevals >= tlimits(1)+2*wintime-0.0001) & (timevals <= tlimits(2)) );
else tmpind = find( (timevals >= tlimits(1)+wintime-0.0001) & (timevals <= tlimits(2)-wintime+0.0001) );
end
% 0.0001 account for numerical inaccuracies on opteron computers
if isempty(tmpind)
error('No time points. Reduce time window or minimum frequency.');
end
if length(timevals) ~= length(tmpind)
verboseprintf(verbose, 'Warning: %d out of %d time values were removed (now %3.2f to %3.2f ms) so the lowest\n', ...
length(timevals)-length(tmpind), length(timevals), timevals(tmpind(1)), timevals(tmpind(end)));
verboseprintf(verbose, ' frequency could be computed with the requested accuracy\n');
end
timevals = timevals(tmpind);
end
% find closet points in data
% --------------------------
timeindices = round(eeg_lat2point(timevals, 1, srate, tlimits, 1E-3));
if length(timeindices) < length(unique(timeindices))
timeindices = unique_bc(timeindices)
verboseprintf(verbose, 'Warning: duplicate times, reduce the number of output times\n');
end
if length(unique(timeindices(2:end)-timeindices(1:end-1))) > 1
verboseprintf(verbose, 'Finding closest points for time variable\n');
verboseprintf(verbose, 'Time values for time/freq decomposition is not perfectly uniformly distributed\n');
else
verboseprintf(verbose, 'Distribution of data point for time/freq decomposition is perfectly uniform\n');
end
timevals = timevect(timeindices);
function verboseprintf(verbose, varargin)
if strcmpi(verbose, 'on')
fprintf(varargin{:});
end