[422372]: / functions / timefreqfunc / newcrossf.m

Download this file

1468 lines (1356 with data), 64.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
% NEWCROSSF - Returns estimates and plots event-related coherence (ERCOH)
% between two input data time series. A lower panel (optionally) shows
% the coherence phase difference between the processes. In this panel:
% In the plot output by > newcrossf(x,y,...);
% 90 degrees (orange) means x leads y by a quarter cycle.
% -90 degrees (blue) means y leads x by a quarter cycle.
% Click on any subplot to view separately and zoom in/out.
%
% Function description:
% Uses EITHER fixed-window, zero-padded FFTs (fastest) OR constant-Q
% 0-padded wavelet DFTs (more even sensitivity across frequencies),
% both Hanning-tapered. Output frequency spacing is the lowest
% frequency ('srate'/'winsize') divided by the 'padratio'.
%
% If an 'alpha' value is given, then bootstrap statistics are
% computed (from a distribution of 'naccu' (200) surrogate baseline
% data epochs) for the baseline epoch, and non-significant features
% of the output plots are zeroed (and shown in green). The baseline
% epoch is all windows with center latencies < the given 'baseline' value
% or, if 'baseboot' is 1, the whole epoch.
%
% Usage with single dataset:
% >> [coh,mcoh,timesout,freqsout,cohboot,cohangles,...
% allcoher,alltfX,alltfY] = newcrossf(x,y,frames,tlimits,srate, ...
% cycles, 'key1', 'val1', 'key2', val2' ...);
%
% Example to compare two condition (coh. comp 1-2 EEG versus ALLEEG(2)):
% >> [coh,mcoh,timesout,freqsout,cohboot,cohangles,...
% allcoher,alltfX,alltfY] = newcrossf({EEG.icaact(1,:,:) ...
% ALLEEG(2).icaact(1,:,:)},{{EEG.icaact(2,:,:) ...
% ALLEEG(2).icaact(2,:,:)}},frames,tlimits,srate, ...
% cycles, 'key1', 'val1', 'key2', val2' ...);
%
% Required inputs:
% x = First single-channel data set (1,frames*nepochs)
% Else, cell array {x1,x2} of two such data vectors to also
% estimate (significant) coherence differences between two
% conditions.
% y = Second single-channel data set (1,frames*nepochs)
% Else, cell array {y1,y2} of two such data vectors.
% frames = Frames per epoch {750}
% tlimits = [mintime maxtime] (ms) Epoch latency limits {[-1000 2000]}
% srate = Data sampling rate (Hz) {250}
% cycles = 0 -> Use FFTs (with constant window length)
% = >0 -> Number of cycles in each analysis wavelet
% = [cycles expfactor] -> if 0 < expfactor < 1, the number
% of wavelet cycles expands with frequency from cycles
% If expfactor = 1, no expansion; if = 0, constant
% window length (as in FFT) {default cycles: 0}
%
% Optional Coherence Type:
% 'type' = ['coher'|'phasecoher'|'amp'] Compute either linear coherence
% ('coher'), phase coherence ('phasecoher') also known
% as phase coupling factor', or amplitude correlations ('amp')
% {default: 'phasecoher'}. Note that for amplitude correlation,
% the significance threshold is computed using the corrcoef
% function, so can be set arbitrary low without increase in
% computation load. An additional type is 'crossspec' to compute
% cross-spectrum between 2 processes (single-trial). This type
% is automatically selected if user enter continuous data.
% 'amplag' = [integer vector] allow to compute non 0 amplitude correlation
% (using option 'amp' above). The vector given as parameter
% indicates the point lags ([-4 -2 0 2 4] would compute the
% correlation at time t-4, t-2, t, t+2, t+4, and return the
% maximum correlation at these points).
% 'subitc' = ['on'|'off'] Subtract stimulus locked Inter-Trial Coherence
% from x and y. This computes the 'intrinsic' coherence
% x and y not arising from common synchronization to
% experimental events. For cell array input, one may provide
% a cell array ({'on','off'} for example). {default: 'off'}
% 'shuffle' = Integer indicating the number of estimates to compute
% bootstrap coherence based on shuffled trials. This estimates
% the coherence arising only from time locking of x and y
% to experimental events (opposite of 'subitc'). For cell array
% input, one may provide a cell array, for example { 1 0 }.
% { default 0: no shuffling }.
%
% Optional Detrend:
% 'detrend' = ['on'|'off'], Linearly detrend each data epoch {'off'}
% 'rmerp' = ['on'|'off'], Remove epoch mean from data epochs {'off'}
%
% Optional FFT/DFT:
% 'winsize' = If cycles==0: data subwindow length (fastest, 2^n<frames);
% if cycles >0: *longest* window length to use. This
% determines the lowest output frequency {~frames/8}
% 'timesout' = Number of output latencies (int<frames-winframes). {200)
% A negative value (-S) subsamples the original latencies
% by S. An array of latencies computes spectral
% decompositions at specific latency values (Note: the
% algorithm finds the closest latencies in the data,
% possibly resulting in slightly unevenly spaced
% output latencies.
% 'padratio' = FFT-length/winframes (2^k) {2}
% Multiplies the number of output frequencies by dividing
% their spacing (standard FFT padding). When cycles~=0,
% frequency spacing is divided by padratio.
% 'maxfreq' = Maximum frequency (Hz) to plot (& output if cycles>0)
% If cycles==0, all FFT frequencies are output.{def: 50}
% Note: NOW DEPRECATED, use 'freqs' instead,
% 'freqs' = [min max] Frequency limits. {Default: [minfreq 50],
% minfreq being determined by the number of data points,
% cycles and sampling frequency}.
% 'nfreqs' = Number of output frequencies. For FFT, closest computed
% frequency will be returned. Overwrite 'padratio' effects
% for wavelets. {Default: use 'padratio'}.
% 'freqscale' = ['log'|'linear'] Frequency scaling. {Default: 'linear'}.
% Note that for obtaining 'log' spaced freqs using FFT,
% closest correspondent frequencies in the 'linear' space
% are returned.
% 'baseline' = Spectral baseline end-time (in ms). NaN imply that no
% baseline is used. A range [min max] may also be entered
% You may also enter one row per region for baseline
% e.g. [0 100; 300 400] considers the window 0 to 100 ms and
% 300 to 400 ms. This is only valid for the coherence amplitude
% not for the coherence phase. { default NaN }
% 'lowmem' = ['on'|'off'] {'off'} Compute frequency by frequency to
% save memory.
%
% Optional Bootstrap:
% 'alpha' = If non-0, compute two-tailed bootstrap significance prob.
% level. Show non-signif output values in neutral green. {0}
% 'naccu' = Number of bootstrap replications to compute {200}
% 'boottype' = ['shuffle'|'shufftrials'|'rand'|'randall'] Bootstrap type: Either
% shuffle time and trial windows ('shuffle' default) or trials only
% using a separate bootstrap for each time window ('shufftrials').
% Option 'rand' randomize the phase. Option 'randall' randomize the
% phase for each individual time/frequency point.
% 'baseboot' = Bootstrap baseline subtract (1 -> use 'baseline'; Default
% 0 -> use whole trial
% [min max] -> use time range)
% Default is to use the baseline unless no baseline is
% specified (then the function uses all sample up to time 0)
% You may also enter one row per region for baseline
% e.g. [0 100; 300 400] considers the window 0 to 100 ms and
% 300 to 400 ms.
% 'condboot' = ['abs'|'angle'|'complex'] In comparing two conditions,
% either subtract complex spectral values' absolute vales
% ('abs'), angles ('angles') or the complex values themselves
% ('complex'). {default: 'abs'}
% 'rboot' = Input bootstrap coherence limits (e.g., from NEWCROSSF)
% The bootstrap type should be identical to that used
% to obtain the input limits. {default: compute from data}
% Optional scalp map plot:
% 'topovec' = (2,nchans) matrix. Scalp maps to plot {[]}
% ELSE [c1,c2], plot two cartoons showing channel locations.
% 'elocs' = Electrode location file for scalp map {none}
% File should be ascii in format of >> topoplot example
% 'chaninfo' = Electrode location additional information (nose position...)
% {default: none}
%
% Optional plot and compute features:
% 'plottype' = ['image'|'curve'] plot time frequency images or
% curves (one curve per frequency). Default is 'image'.
% 'plotmean' = ['on'|'off'] For 'curve' plots only. Average all
% frequencies given as input. Default: 'on'.
% 'highlightmode' = ['background'|'bottom'] For 'curve' plots only,
% display significant time regions either in the plot background
% or underneatht the curve.
% 'plotamp' = ['on'|'off']. Plot coherence magnitude {'on'}
% 'maxamp' = [real] Set the maximum for the amplitude scale {auto}
% 'plotphase' = ['on'|'off']. Plot coherence phase angle {'on'}
% 'angleunit' = Phase units: 'ms' for msec or 'deg' for degrees or 'rad'
% for radians {'deg'}
% 'title' = Optional figure title. If two conditions are given
% as input, title can be a cell array with two text
% string elements {none}
% 'vert' = Latencies to mark with a dotted vertical line {none}
% 'linewidth' = Line width for marktimes traces (thick=2, thin=1) {2}
% 'newfig' = ['on'|'off'] Create new figure for difference plots {'on'}
% 'axesfont' = Axes font size {10}
% 'titlefont' = Title font size {8}
%
% Outputs:
% coh = Matrix (nfreqs,timesout) of coherence magnitudes. Not
% that for continuous data, the function is returning the
% cross-spectrum.
% mcoh = Vector of mean baseline coherence at each frequency
% see 'baseline' parameter.
% timesout = Vector of output latencies (window centers) (ms).
% freqsout = Vector of frequency bin centers (Hz).
% cohboot = Matrix (nfreqs) of upper coher signif. limits
% if 'boottype' is 'trials', (nfreqs,timesout)
% cohangle = (nfreqs,timesout) matrix of coherence angles in radian
% allcoher = single trial coherence
% alltfX = single trial spectral decomposition of X
% alltfY = single trial spectral decomposition of Y
%
% Plot description:
% Assuming both 'plotamp' and 'plotphase' options are 'on' (=default), the upper panel
% presents the magnitude of either phase coherence or linear coherence, depending on
% the 'type' parameter (above). The lower panel presents the coherence phase difference
% (in degrees). Click on any plot to pop up a new window (using 'AXCOPY').
% -- The upper left marginal panel shows mean coherence during the baseline period
% (blue), and when significance is set, the significance threshold (dotted black-green).
% -- The horizontal panel under the coherence magnitude image indicates the maximum
% (green) and minimum (blue) coherence values across all frequencies. When significance
% is set (using option 'trials' for 'boottype'), an additional curve indicates the
% significance threshold (dotted black-green).
%
% Notes: 1) When cycles==0, nfreqs is total number of FFT frequencies.
% 2) 'blue' coherence lag -> x leads y; 'red' -> y leads x
% 3) The 'boottype' should be ideally 'timestrials', but this creates
% large memory demands, so 'times' must be used in many cases.
% 4) If 'boottype' is 'trials', the average of the complex bootstrap
% is subtracted from the coherence to compensate for phase differences
% (the average is also subtracted from the bootstrap distribution).
% For other bootstraps, this is not necessary since there the phase
% distribution should be random.
% 5) If baseline is non-NaN, the baseline is subtracted from
% the complex coherence. On the left hand side of the coherence
% amplitude image, the baseline is displayed as a magenta line.
% (If no baseline is selected, this curve represents the average
% coherence at every given frequency).
%
% Authors: Arnaud Delorme, Sigurd Enghoff & Scott Makeig
% CNL/Salk Institute 1998-2001; SCCN/INC/UCSD, La Jolla, 2002-
%
% See also: TIMEF
% NOTE: one hidden parameter 'savecoher', 0 or 1
% Copyright (C) 8/1/98 Arnaud Delorme, Sigurd Enghoff & Scott Makeig, SCCN/INC/UCSD
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 11-20-98 defined g.linewidth constant -sm
% 04-01-99 made number of frequencies consistent -se
% 06-29-99 fixed constant-Q freq indexing -se
% 08-13-99 added cohangle plotting -sm
% 08-20-99 made bootstrap more efficient -sm
% 08-24-99 allow nan values introduced by possible EVENTLOCK preproc. -sm
% 03-16-00 added lead/lag interpretation to help msg - sm & eric visser
% 03-16-00 added AXCOPY feature -sm & tpj
% 04-20-00 fixed Rangle sign for wavelets, added verts array -sm
% 01-22-01 corrected help msg when nargin<2 -sm & arno delorme
% 01-25-02 reformated help & license, added links -ad
% 03-09-02 function restructuration -ad
% add 'key', val arguments (+ external baseboot, baseline, color axis, angleunit...)
% add detrending (across time and trials) + 'coher' option for amplitude coherence
% significance only if alpha is given, plotting options in 'plotamp' and 'plotphase'
% 03-16-02 timeout automatically adjusted if too high -ad
% 04-03-02 added new options for bootstrap -ad
% There are 3 "objects" Tf, Coher and Boot which are handled
% - by specific functions under Matlab
% (Tf) function Tf = tfinit(...) - create object Time Frequency (Tf) associated with some data
% (Tf) function [Tf, itcvals] = tfitc(...) - compute itc for the selected data
% (Tf) function [Tf, itcvals] = tfitcpost(Tf, trials) - itc normalisation
% (Tf) function [Tf, tmpX] = tfcomp(Tf, trials, times) - compute time freq. decomposition
% (Coher) function Coher = coherinit(...) - initialize coherence object
% (Coher) function Coher = cohercomp(Coher, tmpX, tmpY, trial, time) - compute coherence
% (Coher) function Coher = cohercomppost(Coher, trials) - coherence normalization
% (Boot) function Boot = bootinit(...) - initialize bootstrap object
% (Boot) function Boot = bootcomp(...) - compute bootstrap
% (Boot) function [Boot, Rbootout] = bootcomppost(...) - bootstrap normalization
% - by real objects under C++ (see C++ code)
function [R,mbase,timesout,freqs,Rbootout,Rangle, coherresout, alltfX, alltfY] = newcrossf(X, Y, frame, tlimits, Fs, varwin, varargin)
%varwin,winsize,nwin,oversmp,maxfreq,alpha,verts,caxmax)
% Commandline arg defaults:
DEFAULT_ANGLEUNITS = 'deg'; % angle plotting units - 'ms' or 'deg'
DEFAULT_EPOCH = 750; % Frames per epoch
DEFAULT_TIMELIM = [-1000 2000]; % Time range of epochs (ms)
DEFAULT_FS = 250; % Sampling frequency (Hz)
DEFAULT_NWIN = 200; % Number of windows = horizontal resolution
DEFAULT_VARWIN = 0; % Fixed window length or base on cycles.
% =0: fix window length to nwin
% >0: set window length equal varwin cycles
% bounded above by winsize, also determines
% the min. freq. to be computed.
DEFAULT_OVERSMP = 2; % Number of times to oversample = vertical resolution
DEFAULT_MAXFREQ = 50; % Maximum frequency to display (Hz)
DEFAULT_TITLE = 'Event-Related Coherence'; % Figure title
DEFAULT_ALPHA = NaN; % Default two-sided significance probability threshold
%disp('WARNING: this function is not part of the EEGLAB toolbox and should not be distributed');
%disp(' you must contact Arnaud Delorme (arno@salk.edu) for terms of use');
if (nargin < 2)
help newcrossf
return
end
coherresout = [];
if ~iscell(X)
if (min(size(X))~=1 || length(X)<2)
fprintf('crossf(): x must be a row or column vector.\n');
return
elseif (min(size(Y))~=1 || length(Y)<2)
fprintf('crossf(): y must be a row or column vector.\n');
return
elseif (length(X) ~= length(Y))
fprintf('crossf(): x and y must have same length.\n');
return
end
end
if (nargin < 3)
frame = DEFAULT_EPOCH;
elseif (~isnumeric(frame) || length(frame)~=1 || frame~=round(frame))
fprintf('crossf(): Value of frames must be an integer.\n');
return
elseif (frame <= 0)
fprintf('crossf(): Value of frames must be positive.\n');
return
elseif ~iscell(X) && (rem(size(X,2),frame) ~= 0) && (rem(size(X,1),frame) ~= 0)
fprintf('crossf(): Length of data vectors must be divisible by frames.\n');
return
end
if (nargin < 4)
tlimits = DEFAULT_TIMELIM;
elseif (~isnumeric(tlimits) || sum(size(tlimits))~=3)
error('crossf(): Value of tlimits must be a vector containing two numbers.');
elseif (tlimits(1) >= tlimits(2))
error('crossf(): tlimits interval must be [min,max].');
end
if (nargin < 5)
Fs = DEFAULT_FS;
elseif (~isnumeric(Fs) || length(Fs)~=1)
error('crossf(): Value of srate must be a number.');
elseif (Fs <= 0)
error('crossf(): Value of srate must be positive.');
end
if (nargin < 6)
varwin = DEFAULT_VARWIN;
elseif (~isnumeric(varwin) || length(varwin)>2)
error('crossf(): Value of cycles must be a number or a (1,2) vector.');
elseif (varwin < 0)
error('crossf(): Value of cycles must be either zero or positive.');
end
% consider structure for these arguments
% --------------------------------------
vararginori = varargin;
for index=1:length(varargin)
if iscell(varargin{index}), varargin{index} = { varargin{index} }; end
end
if ~isempty(varargin)
[tmp indices] = unique_bc(varargin(1:2:end)); % keep the first one
varargin = varargin(sort(union(indices*2-1, indices*2))); % these 2 line remove duplicate arguments
try, g = struct(varargin{:});
catch, error('Argument error in the {''param'', value} sequence'); end;
else
g = [];
end
try, g.condboot; catch, g.condboot = 'abs'; end
try, g.shuffle; catch, g.shuffle = 0; end
try, g.title; catch, g.title = DEFAULT_TITLE; end
try, g.winsize; catch, g.winsize = max(pow2(nextpow2(frame)-3),4); end
try, g.pad; catch, g.pad = max(pow2(nextpow2(g.winsize)),4); end
try, g.timesout; catch, g.timesout = DEFAULT_NWIN; end
try, g.padratio; catch, g.padratio = DEFAULT_OVERSMP; end
try, g.topovec; catch, g.topovec = []; end
try, g.elocs; catch, g.elocs = ''; end
try, g.alpha; catch, g.alpha = DEFAULT_ALPHA; end;
try, g.marktimes; catch, g.marktimes = []; end; % default no vertical lines
try, g.marktimes = g.vert; catch, g.vert = []; end; % default no vertical lines
try, g.rboot; catch, g.rboot = []; end
try, g.plotamp; catch, g.plotamp = 'on'; end
try, g.plotphase; catch, g.plotphase = 'on'; end
try, g.plotbootsub; catch, g.plotbootsub = 'on'; end
try, g.detrend; catch, g.detrend = 'off'; end
try, g.rmerp; catch, g.rmerp = 'off'; end
try, g.baseline; catch, g.baseline = NaN; end
try, g.baseboot; catch, g.baseboot = 1; end
try, g.linewidth; catch, g.linewidth = 2; end
try, g.maxfreq; catch, g.maxfreq = DEFAULT_MAXFREQ; end
try, g.freqs; catch, g.freqs = [0 g.maxfreq]; end
try, g.nfreqs; catch, g.nfreqs = []; end
try, g.freqscale; catch, g.freqscale = 'linear'; end
try, g.naccu; catch, g.naccu = 200; end
try, g.angleunit; catch, g.angleunit = DEFAULT_ANGLEUNITS; end
try, g.type; catch, g.type = 'phasecoher'; end;
try, g.newfig; catch, g.newfig = 'on'; end
try, g.boottype; catch, g.boottype = 'shuffle'; end;
try, g.subitc; catch, g.subitc = 'off'; end
try, g.compute; catch, g.compute = 'matlab'; end
try, g.maxamp; catch, g.maxamp = []; end
try, g.savecoher; catch, g.savecoher = 0; end
try, g.amplag; catch, g.amplag = 0; end
try, g.noinput; catch, g.noinput = 'no'; end
try, g.lowmem; catch, g.lowmem = 'off'; end
try, g.plottype; catch, g.plottype = 'image'; end
try, g.plotmean; catch, g.plotmean = 'on'; end
try, g.highlightmode; catch, g.highlightmode = 'background'; end
try, g.chaninfo; catch, g.chaninfo = []; end
if isfield(g, 'detret'), g.detrend = g.detret; end
if isfield(g, 'detrep'), g.rmerp = g.detrep; end
if ~isnan(g.alpha) && frame == length(X)
error('Cannot compute significance for continuous data (functionality not implemented)');
end
allfields = fieldnames(g);
for index = 1:length(allfields)
switch allfields{index}
case { 'shuffle' 'title' 'winsize' 'pad' 'timesout' 'padratio' 'maxfreq' 'topovec' 'elocs' 'alpha' ...
'marktimes' 'vert' 'rboot' 'plotamp' 'plotphase' 'plotbootsub' 'detrep' 'rmerp' 'detret' 'detrend' ...
'baseline' 'baseboot' 'linewidth' 'naccu' 'angleunit' 'type' 'boottype' 'subitc' 'lowmem' 'plottype' ...
'compute' 'maxamp' 'savecoher' 'noinput' 'condboot' 'newfig' 'freqs' 'nfreqs' 'freqscale' 'amplag' ...
'highlightmode' 'plotmean' 'chaninfo' };
case {'plotersp' 'plotitc' }, disp(['crossf warning: timef option ''' allfields{index} ''' ignored']);
otherwise disp(['crossf error: unrecognized option ''' allfields{index} '''']); beep; return;
end
end
g.tlimits = tlimits;
g.frame = frame;
if ~iscell(X)
g.trials = prod(size(X)) / g.frame;
else g.trials = prod(size(X{1}))/g.frame;
end
g.srate = Fs;
g.cycles = varwin;
g.type = lower(g.type);
g.boottype = lower(g.boottype);
g.rmerp = lower(g.rmerp);
g.detrend = lower(g.detrend);
g.plotphase = lower(g.plotphase);
g.plotbootsub = lower(g.plotbootsub);
g.subitc = lower(g.subitc);
g.plotamp = lower(g.plotamp);
g.compute = lower(g.compute);
g.AXES_FONT = 10;
g.TITLE_FONT = 14;
% change type if necessary
if g.trials == 1 && ~strcmpi(g.type, 'crossspec')
disp('Continuous data: switching to crossspectrum');
g.type = 'crossspec';
end
if strcmpi(g.freqscale, 'log') && g.freqs(1) == 0, g.freqs(1) = 3; end
% reshape 3D inputs
% -----------------
if ndims(X) == 3
X = reshape(X, size(X,1), size(X,2)*size(X,3));
Y = reshape(Y, size(Y,1), size(Y,2)*size(Y,3));
end
% testing arguments consistency
% -----------------------------
if strcmpi(g.title, DEFAULT_TITLE)
switch g.type
case 'coher', g.title = 'Event-Related Coherence'; % Figure title
case 'phasecoher', g.title = 'Event-Related Phase Coherence';
case 'phasecoher2', g.title = 'Event-Related Phase Coherence 2';
case 'amp' , g.title = 'Event-Related Amplitude Correlation';
case 'crossspec', g.title = 'Event-Related Amplitude Correlation';
end
end
if ~ischar(g.title) && ~iscell(g.title)
error('Title must be a string or a cell array.');
end
if isempty(g.topovec)
g.topovec = [];
elseif min(size(g.topovec))==1
g.topovec = g.topovec(:);
if size(g.topovec,1)~=2
error('topovec must be a row or column vector.');
end
end
if isempty(g.elocs)
g.elocs = '';
elseif (~ischar(g.elocs)) && ~isstruct(g.elocs)
error('Channel location file must be a valid text file.');
end
if (~isnumeric(g.alpha) || length(g.alpha)~=1)
error('timef(): Value of g.alpha must be a number.\n');
elseif (round(g.naccu*g.alpha) < 2)
fprintf('Value of g.alpha is out of the normal range [%g,0.5]\n',2/g.naccu);
g.naccu = round(2/g.alpha);
fprintf(' Increasing the number of bootstrap iterations to %d\n',g.naccu);
end
if g.alpha>0.5 || g.alpha<=0
error('Value of g.alpha is out of the allowed range (0.00,0.5).');
end
switch lower(g.newfig)
case { 'on', 'off' }, ;
otherwise error('newfig must be either on or off');
end
switch g.angleunit
case { 'ms', 'deg', 'rad' },;
otherwise error('Angleunit must be either ''deg'', ''rad'', or ''ms''');
end;
switch g.type
case { 'coher', 'phasecoher' 'phasecoher2' 'amp' 'crossspec' },;
otherwise error('Type must be either ''coher'', ''phasecoher'', ''crossspec'', or ''amp''');
end;
switch g.boottype
case { 'shuffle' 'shufftrials' 'rand' 'randall'},;
otherwise error('Invalid boot type');
end;
if ~isnumeric(g.shuffle) && ~iscell(g.shuffle)
error('Shuffle argument type must be numeric');
end
switch g.compute
case { 'matlab', 'c' },;
otherwise error('compute must be either ''matlab'' or ''c''');
end
if ~strcmpi(g.condboot, 'abs') && ~strcmpi(g.condboot, 'angle') ...
& ~strcmpi(g.condboot, 'complex')
error('Condboot must be either ''abs'', ''angle'' or ''complex''.');
end
if g.tlimits(2)-g.tlimits(1) < 30
disp('Crossf WARNING: time range is very small (<30 ms). Times limits are in milliseconds not seconds.');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute frequency by frequency if low memory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmpi(g.lowmem, 'on') && ~iscell(X) && length(X) ~= g.frame && (isempty(g.nfreqs) || g.nfreqs ~= 1)
% compute for first 2 trials to get freqsout
XX = reshape(X, 1, frame, length(X)/g.frame);
YY = reshape(Y, 1, frame, length(Y)/g.frame);
[coh,mcoh,timesout,freqs] = newcrossf(XX(1,:,1), YY(1,:,1), frame, tlimits, Fs, varwin, 'plotamp', 'off', 'plotphase', 'off',varargin{:});
% scan all frequencies
for index = 1:length(freqs)
if nargout < 6
[R(index,:),mbase(index),timesout,tmpfreqs(index),Rbootout(index,:),Rangle(index,:)] = ...
newcrossf(X, Y, frame, tlimits, Fs, varwin, 'freqs', [freqs(index) freqs(index)], 'nfreqs', 1, ...
'plotamp', 'off', 'plotphase', 'off',varargin{:}, 'lowmem', 'off', 'timesout', timesout);
elseif nargout == 7 % requires RAM
[R(index,:),mbase(index),timesout,tmpfreqs(index),Rbootout(index,:),Rangle(index,:), ...
coherresout(index,:,:)] = ...
newcrossf(X, Y, frame, tlimits, Fs, varwin, 'freqs', [freqs(index) freqs(index)], 'nfreqs', 1, ...
'plotamp', 'off', 'plotphase', 'off',varargin{:}, 'lowmem', 'off', 'timesout', timesout);
else
[R(index,:),mbase(index),timesout,tmpfreqs(index),Rbootout(index,:),Rangle(index,:), ...
coherresout(index,:,:),alltfX(index,:,:),alltfY(index,:,:)] = ...
newcrossf(X, Y, frame, tlimits, Fs, varwin, 'freqs', [freqs(index) freqs(index)], 'nfreqs', 1, ...
'plotamp', 'off', 'plotphase', 'off',varargin{:}, 'lowmem', 'off', 'timesout', timesout);
end
end
% plot and return
plotall(R.*exp(j*Rangle), Rbootout, timesout, freqs, mbase, g);
return;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compare 2 conditions part
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if iscell(X)
if length(X) ~= 2 || length(Y) ~= 2
error('crossf: to compare conditions, X and Y input must be 2-elements cell arrays');
end
% deal with titles
% ----------------
for index = length(vararginori)-1:-2:1
if index<=length(vararginori) % needed: if elements are deleted
if strcmp(vararginori{index}, 'title') , vararginori(index:index+1) = []; end
if strcmp(vararginori{index}, 'subitc'), vararginori(index:index+1) = []; end
if strcmp(vararginori{index}, 'shuffle'), vararginori(index:index+1) = []; end
end
end
if ~iscell(g.subitc)
g.subitc = { g.subitc g.subitc };
end
if ~iscell(g.shuffle)
g.shuffle = { g.shuffle g.shuffle };
end
if iscell(g.title)
if length(g.title) <= 2,
g.title{3} = 'Condition 1 - condition 2';
end
else
g.title = { 'Condition 1', 'Condition 2', 'Condition 1 - condition 2' };
end
fprintf('Running newcrossf on condition 1 *********************\n');
fprintf('Note: if an out-of-memory error occurs, try reducing the\n');
fprintf(' number of time points or number of frequencies\n');
fprintf(' (the ''coher'' options takes 3 times more memory than other options)\n');
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
if strcmpi(g.newfig, 'on'), figure; end;
subplot(1,3,1);
end
if ~strcmp(g.type, 'coher') && nargout < 9
[R1,mbase,timesout,freqs,Rbootout1,Rangle1, savecoher1] = newcrossf(X{1}, Y{1}, ...
frame, tlimits, Fs, varwin, 'savecoher', 1, 'title', g.title{1}, ...
'shuffle', g.shuffle{1}, 'subitc', g.subitc{1}, vararginori{:});
else
[R1,mbase,timesout,freqs,Rbootout1,Rangle1, savecoher1, Tfx1, Tfy1] = newcrossf(X{1}, Y{1}, ...
frame, tlimits, Fs, varwin, 'savecoher', 1, 'title', g.title{1}, ...
'shuffle', g.shuffle{1}, 'subitc', g.subitc{1}, vararginori{:});
end
R1 = R1.*exp(j*Rangle1/180*pi);
fprintf('\nRunning newcrossf on condition 2 *********************\n');
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
subplot(1,3,2);
end
if ~strcmp(g.type, 'coher') && nargout < 9
[R2,mbase,timesout,freqs,Rbootout2,Rangle2, savecoher2] = newcrossf(X{2}, Y{2}, ...
frame, tlimits, Fs, varwin,'savecoher', 1, 'title', g.title{2}, ...
'shuffle', g.shuffle{2}, 'subitc', g.subitc{2}, vararginori{:});
else
[R2,mbase,timesout,freqs,Rbootout2,Rangle2, savecoher2, Tfx2, Tfy2] = newcrossf(X{2}, Y{2}, ...
frame, tlimits, Fs, varwin,'savecoher', 1, 'title', g.title{2}, ...
'shuffle', g.shuffle{2}, 'subitc', g.subitc{2}, vararginori{:} );
end
%figure; imagesc(abs( sum( savecoher1 ./ abs(savecoher1), 3)) - abs( sum( savecoher2 ./ abs(savecoher2), 3) )); cbar; return;
%figure; imagesc(abs( R2 ) - abs( R1) ); cbar; return;
R2 = R2.*exp(j*Rangle2/180*pi);
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
subplot(1,3,3);
end
if isnan(g.alpha)
switch(g.condboot)
case 'abs', Rdiff = abs(R1)-abs(R2);
case 'angle', Rdiff = angle(R1)-angle(R2);
case 'complex', Rdiff = R1-R2;
end
g.title = g.title{3};
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
plotall(Rdiff, [], timesout, freqs, mbase, g);
end
Rbootout = [];
else
% preprocess data and run condstat
% --------------------------------
switch g.type
case 'coher' % take the square of alltfx and alltfy first to speed up
Tfx1_ = Tfx1.*conj(Tfx1); Tfx2_ = Tfx2.*conj(Tfx2);
Tfy1_ = Tfy1.*conj(Tfy1); Tfy2_ = Tfy2.*conj(Tfy2);
formula = 'sum(arg1(:,:,X),3) ./ sqrt(sum(arg2(:,:,X),3)) ./ sqrt(sum(arg3(:,:,X),3))';
if strcmpi(g.lowmem, 'on')
for ind = 1:2:size(savecoher1,1)
if ind == size(savecoher1,1), indarr = ind; else indarr = [ind:ind+1]; end
[Rdiff(indarr,:,:) coherimages(indarr,:,:) coher1(indarr,:,:) coher2(indarr,:,:)] = condstat(formula, g.naccu, g.alpha, ...
'both', g.condboot, { savecoher1(indarr,:,:) savecoher2(indarr,:,:) }, ...
{ Tfx1_(indarr,:,:) Tfx2_(indarr,:,:) }, { Tfy1_(indarr,:,:) Tfy2_(indarr,:,:) });
end
else
[Rdiff coherimages coher1 coher2] = condstat(formula, g.naccu, g.alpha, ...
'both', g.condboot, { savecoher1 savecoher2 }, { Tfx1_ Tfx2_ }, { Tfy1_ Tfy2_ });
end
case 'amp' % amplitude correlation
error('Cannot compute difference of amplitude correlation images yet');
case 'crossspec' % amplitude correlation
error('Cannot compute difference of cross-spectral decomposition');
case 'phasecoher', % normalize first to speed up
savecoher1 = savecoher1 ./ sqrt(savecoher1.*conj(savecoher1));
savecoher2 = savecoher2 ./ sqrt(savecoher2.*conj(savecoher2)); % twice faster than abs()
formula = 'sum(arg1(:,:,X),3) ./ length(X)';
if strcmpi(g.lowmem, 'on')
for ind = 1:2:size(savecoher1,1)
if ind == size(savecoher1,1), indarr = ind; else indarr = [ind:ind+1]; end
[Rdiff(indarr,:,:) coherimages(indarr,:,:) coher1(indarr,:,:) coher2(indarr,:,:)] = condstat(formula, g.naccu, g.alpha, ...
'both', g.condboot, { savecoher1(indarr,:,:) savecoher2(indarr,:,:) } );
end;
else
[Rdiff coherimages coher1 coher2] = condstat(formula, g.naccu, g.alpha, 'both', g.condboot, ...
{ savecoher1 savecoher2 });
end
case 'phasecoher2',
savecoher1 = savecoher1 ./ sqrt(savecoher1.*conj(savecoher1));
savecoher2 = savecoher2 ./ sqrt(savecoher2.*conj(savecoher2)); % twice faster than abs()
formula = 'sum(arg1(:,:,X),3) ./ sum(sqrt(arg1(:,:,X).*conj(arg1(:,:,X)))),3)';
% sqrt(a.*conj(a)) is about twice faster than abs()
if strcmpi(g.lowmem, 'on')
for ind = 1:2:size(savecoher1,1)
if ind == size(savecoher1,1), indarr = ind; else indarr = [ind:ind+1]; end
[Rdiff(indarr,:,:) coherimages(indarr,:,:) coher1(indarr,:,:) coher2(indarr,:,:)] = condstat(formula, g.naccu, g.alpha, ...
'both', g.condboot, { savecoher1(indarr,:,:) savecoher2(indarr,:,:) } );
end;
else
[Rdiff coherimages coher1 coher2] = condstat(formula, g.naccu, g.alpha, 'both', g.condboot, ...
{ savecoher1 savecoher2 });
end
end
%Boot = bootinit( [], size(savecoher1,1), g.timesout, g.naccu, 0, g.baseboot, 'noboottype', g.alpha, g.rboot);
%Boot.Coherboot.R = coherimages;
%Boot = bootcomppost(Boot, [], [], []);
g.title = g.title{3};
g.boottype = 'shufftrials';
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
plotall(Rdiff, coherimages, timesout, freqs, mbase, g);
end
% outputs
Rbootout = {Rbootout1 Rbootout2 coherimages};
end
if size(Rdiff,3) > 1, Rdiff = reshape(Rdiff, 1, size(Rdiff,3)); end
R = { abs(R1) abs(R2) fastif(isreal(Rdiff), Rdiff, abs(Rdiff)) };
Rangle = { angle(R1) angle(R2) angle(Rdiff) };
coherresout = [];
if nargout >=9
alltfX = { Tfx1 Tfx2 };
alltfY = { Tfy1 Tfy2 };
end
return; % ********************************** END FOR SEVERAL CONDITIONS
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shuffle trials if necessary
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if g.shuffle ~= 0
fprintf('x and y data trials being shuffled %d times\n',g.shuffle);
XX = reshape(X, 1, frame, length(X)/g.frame);
YY = Y;
X = [];
Y = [];
for index = 1:g.shuffle
XX = shuffle(XX,3);
X = [X XX(:,:)];
Y = [Y YY];
end
end
% detrend over epochs (trials) if requested
% -----------------------------------------
switch g.rmerp
case 'on'
X = reshape(X, g.frame, length(X)/g.frame);
X = X - mean(X,2)*ones(1, length(X(:))/g.frame);
Y = reshape(Y, g.frame, length(Y)/g.frame);
Y = Y - mean(Y,2)*ones(1, length(Y(:))/g.frame);
end;
%%%%%%%%%%%%%%%%%%%%%%
% display text to user
%%%%%%%%%%%%%%%%%%%%%%
fprintf('\nComputing the Event-Related \n');
switch g.type
case 'phasecoher', fprintf('Phase Coherence (ITC) images based on %d trials\n',g.trials);
case 'phasecoher2', fprintf('Phase Coherence 2 (ITC) images based on %d trials\n',g.trials);
case 'coher', fprintf('Linear Coherence (ITC) images based on %d trials\n',g.trials);
case 'amp', fprintf('Amplitude correlation images based on %d trials\n',g.trials);
case 'crossspec', fprintf('Cross-spectral images based on %d trials\n',g.trials);
end
if ~isnan(g.alpha)
fprintf('Bootstrap confidence limits will be computed based on alpha = %g\n', g.alpha);
else
fprintf('Bootstrap confidence limits will NOT be computed.\n');
end
switch g.plotphase
case 'on', fprintf(['Coherence angles will be imaged in ',g.angleunit,'\n']);
end
%%%%%%%%%%%%%%%%%%%%%%%
% main computation loop
%%%%%%%%%%%%%%%%%%%%%%%
% -------------------------------------
% compute time frequency decompositions
% -------------------------------------
if length(g.timesout) > 1, tmioutopt = { 'timesout' , g.timesout };
else tmioutopt = { 'ntimesout', g.timesout };
end
spectraloptions = { tmioutopt{:}, 'winsize', g.winsize, 'tlimits', g.tlimits, 'detrend', ...
g.detrend, 'subitc', g.subitc, 'wavelet', g.cycles, 'padratio', g.padratio, ...
'freqs' g.freqs 'freqscale' g.freqscale 'nfreqs' g.nfreqs };
if ~strcmpi(g.type, 'amp') && ~strcmpi(g.type, 'crossspec')
spectraloptions = { spectraloptions{:} 'itctype' g.type };
end
fprintf('\nProcessing first input\n');
X = reshape(X, g.frame, g.trials);
[alltfX freqs timesout] = timefreq(X, g.srate, spectraloptions{:});
fprintf('\nProcessing second input\n');
Y = reshape(Y, g.frame, g.trials);
[alltfY] = timefreq(Y, g.srate, spectraloptions{:});
% ------------------
% compute coherences
% ------------------
tmpprod = alltfX .* conj(alltfY);
if nargout > 6 || strcmpi(g.type, 'phasecoher2') || strcmpi(g.type, 'phasecoher')
coherresout = alltfX .* conj(alltfY);
end
switch g.type
case 'crossspec',
coherres = alltfX .* conj(alltfY); % no normalization
case 'coher',
coherres = sum(alltfX .* conj(alltfY), 3) ./ sqrt( sum(abs(alltfX).^2,3) .* sum(abs(alltfY).^2,3) );
case 'amp'
alltfX = abs(alltfX);
alltfY = abs(alltfY);
coherres = ampcorr(alltfX, alltfY, freqs, timesout, g);
g.alpha = NaN;
coherresout = [];
case 'phasecoher2',
coherres = sum(coherresout, 3) ./ sum(abs(coherresout),3);
case 'phasecoher',
coherres = sum( coherresout ./ abs(coherresout), 3) / g.trials;
end
%%%%%%%%%%
% baseline
%%%%%%%%%%
if size(g.baseline,2) == 2
baseln = [];
for index = 1:size(g.baseline,1)
tmptime = find(timesout >= g.baseline(index,1) & timesout <= g.baseline(index,2));
baseln = union_bc(baseln, tmptime);
end
if length(baseln)==0
error('No point found in baseline');
end
else
if ~isempty(find(timesout < g.baseline))
baseln = find(timesout < g.baseline); % subtract means of pre-0 (centered) windows
else
baseln = 1:length(timesout); % use all times as baseline
end
end
if ~isnan(g.alpha) && length(baseln)==0
fprintf('timef(): no window centers in baseline (times<%g) - shorten (max) window length.\n', g.baseline)
return
end
mbase = mean(abs(coherres(:,baseln)')); % mean baseline coherence magnitude
% -----------------
% compute bootstrap
% -----------------
if ~isempty(g.rboot)
Rbootout = g.rboot;
else
if ~isnan(g.alpha)
% getting formula for coherence
% -----------------------------
switch g.type
case 'coher',
inputdata = { alltfX alltfY }; % default
formula = 'sum(arg1 .* conj(arg2), 3) ./ sqrt( sum(abs(arg1).^2,3) .* sum(abs(arg2).^2,3) );';
case 'amp', % not implemented
inputdata = { abs(alltfX) abs(alltfY) }; % default
case 'phasecoher2',
inputdata = { alltfX alltfY }; % default
formula = [ 'tmp = arg1 .* conj(arg2);' ...
'res = sum(tmp, 3) ./ sum(abs(tmp),3);' ];
case 'phasecoher',
inputdata = { alltfX./abs(alltfX) alltfY./abs(alltfY) };
formula = [ 'mean(arg1 .* conj(arg2),3);' ];
case 'crossspec',
inputdata = { alltfX./abs(alltfX) alltfY./abs(alltfY) };
formulainit = [ 'arg1 .* conj(arg2);' ];
end
% finding baseline for bootstrap
% ------------------------------
if size(g.baseboot,2) == 1
if g.baseboot == 0, baselntmp = [];
elseif ~isnan(g.baseline(1))
baselntmp = baseln;
else baselntmp = find(timesout <= 0); % if it is empty use whole epoch
end
else
baselntmp = [];
for index = 1:size(g.baseboot,1)
tmptime = find(timesout >= g.baseboot(index,1) & timesout <= g.baseboot(index,2));
baselntmp = union_bc(baselntmp, tmptime);
end
end
if prod(size(g.baseboot)) > 2
fprintf('Bootstrap analysis will use data in multiple selected windows.\n');
elseif size(g.baseboot,2) == 2
fprintf('Bootstrap analysis will use data in range %3.2g-%3.2g ms.\n', g.baseboot(1), g.baseboot(2));
elseif g.baseboot
fprintf(' %d bootstrap windows in baseline (times<%g).\n', length(baselntmp), g.baseboot)
end;
if strcmpi(g.boottype, 'shuffle') || strcmpi(g.boottype, 'rand')
Rbootout = bootstat(inputdata, formula, 'boottype', g.boottype, 'label', 'coherence', ...
'bootside', 'upper', 'shuffledim', [2 3], 'dimaccu', 2, ...
'naccu', g.naccu, 'alpha', g.alpha, 'basevect', baselntmp);
elseif strcmpi(g.boottype, 'randall')
% randomize phase but do not accumulate over time
% dimension (NOT TESTED)
% note the absence of dimaccu and the shuffledim 3
Rbootout = bootstat(inputdata, formula, 'boottype', 'rand', ...
'bootside', 'upper', 'shuffledim', 3, ...
'naccu', g.naccu, 'alpha', g.alpha, 'basevect', baselntmp);
else % shuffle only trials (NOT TESTED)
% note the absence of dimaccu and the shuffledim 3
Rbootout = bootstat(inputdata, formula, 'boottype', 'shuffle', ...
'bootside', 'upper', 'shuffledim', 3, ...
'naccu', g.naccu, 'alpha', g.alpha, 'basevect', baselntmp);
end;
else Rbootout = [];
end
% note that the bootstrap thresholding is actually performed in the display subfunction plotall()
end;
% plot everything
% ---------------
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
if strcmpi(g.plottype, 'image')
plotall ( coherres, Rbootout, timesout, freqs, mbase, g);
else
plotallcurves( coherres, Rbootout, timesout, freqs, mbase, g);
end
end
% process outputs
% --------------
Rangle = angle(coherres);
R = abs(coherres);
return;
% ***********************************************************************
% ------------------------------
% amplitude correlation function
% ------------------------------
function [coherres, lagmap] = ampcorr(alltfX, alltfY, freqs, timesout, g)
% initialize variables
% --------------------
coherres = zeros(length(freqs), length(timesout), length(g.amplag));
alpha = zeros(length(freqs), length(timesout), length(g.amplag));
countlag = 1;
for lag = g.amplag
fprintf('Computing %d point lag amplitude correlation, please wait...\n', lag);
for i1 = 1:length(freqs)
for i2 = max(1, 1-lag):min(length(timesout)-lag, length(timesout))
if ~isnan(g.alpha)
[tmp1 tmp2] = corrcoef( squeeze(alltfX(i1,i2,:)), squeeze(alltfY(i1,i2+lag,:)) );
coherres(i1,i2,countlag) = tmp1(1,2);
alpha(i1,i2,countlag) = tmp2(1,2);
else
tmp1 = corrcoef( squeeze(alltfX(i1,i2,:)), squeeze(alltfY(i1,i2+lag,:)) );
coherres(i1,i2,countlag) = tmp1(1,2);
end
end
end
countlag = countlag + 1;
end
% find max corr if different lags
% -------------------------------
if length(g.amplag) > 1
[coherres lagmap] = max(coherres, [], 3);
dimsize = length(freqs)*length(timesout);
alpha = reshape(alpha((lagmap(:)-1)*dimsize+[1:dimsize]'),length(freqs), length(timesout));
% above is same as (but faster)
% for i1 = 1:length(freqs)
% for i2 = 1:length(timesout)
% alphanew(i1, i2) = alpha(i1, i2, lagmap(i1, i2));
% end
% end
lagmap = g.amplag(lagmap); % real lag
coherres = coherres.*exp(j*lagmap/max(abs(g.amplag))); % encode lag in the phase
else
lagmap = [];
end
% apply significance mask
% -----------------------
if ~isnan(g.alpha)
tmpind = find(alpha(:) > g.alpha);
coherres(tmpind) = 0;
end
% ------------------
% plotting functions
% ------------------
function plotall(R, Rboot, times, freqs, mbase, g)
switch lower(g.plotphase)
case 'on',
switch lower(g.plotamp),
case 'on', ordinate1 = 0.67; ordinate2 = 0.1; height = 0.33; g.plot = 1;
case 'off', ordinate2 = 0.1; height = 0.9; g.plot = 1;
end;
case 'off', ordinate1 = 0.1; height = 0.9;
switch lower(g.plotamp),
case 'on', ordinate1 = 0.1; height = 0.9; g.plot = 1;
case 'off', g.plot = 0;
end;
end;
% compute angles
% --------------
Rangle = angle(R);
if ~isreal(R)
R = abs(R);
Rraw =R; % raw coherence values
setylim = 1;
if ~isnan(g.baseline)
R = R - repmat(mbase',[1 g.timesout]); % remove baseline mean
end
else
Rraw = R;
setylim = 0;
end
if g.plot
fprintf('\nNow plotting...\n');
set(gcf,'DefaultAxesFontSize',g.AXES_FONT)
icadefs;
colormap(feval(DEFAULT_COLORMAP, 256));
pos = get(gca,'position'); % plot relative to current axes
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)];
axis('off')
end
switch lower(g.plotamp)
case 'on'
%
% Image the coherence [% perturbations]
%
RR = R;
if ~isnan(g.alpha) % zero out (and 'green out') nonsignif. R values
switch dims(Rboot)
case 3, RR (find(RR > Rboot(:,:,1) & (RR < Rboot(:,:,2)))) = 0;
Rraw(find(RR > Rboot(:,:,1) & (RR < Rboot(:,:,2)))) = 0;
case 2, RR (find(RR < Rboot)) = 0;
Rraw(find(RR < Rboot)) = 0;
case 1, RR (find(RR < repmat(Rboot(:),[1 size(RR,2)]))) = 0;
Rraw(find(RR < repmat(Rboot(:),[1 size(Rraw,2)]))) = 0;
end;
end
h(6) = axes('Units','Normalized', 'Position',[.1 ordinate1 .8 height].*s+q);
map=hsv(300); % install circular color map - green=0, yellow, orng, red, violet = max
% cyan, blue, violet = min
map = flipud([map(251:end,:);map(1:250,:)]);
map(151,:) = map(151,:)*0.9; % tone down the (0=) green!
colormap(map);
if ~strcmpi(g.freqscale, 'log')
try, imagesc(times,freqs,RR,max(max(RR))*[-1 1]); % plot the coherence image
catch, imagesc(times,freqs,RR,[-1 1]); end
else
try, imagesclogy(times,freqs,RR,max(max(RR))*[-1 1]); % plot the coherence image
catch, imagesclogy(times,freqs,RR,[-1 1]); end
end
set(gca,'ydir','norm');
if ~isempty(g.maxamp)
caxis([-g.maxamp g.maxamp]);
end
tmpscale = caxis;
hold on
plot([0 0],[0 freqs(end)],'--m','LineWidth',g.linewidth)
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[0 freqs(end)],'--m','LineWidth',g.linewidth);
end
hold off
set(h(6),'YTickLabel',[],'YTick',[])
set(h(6),'XTickLabel',[],'XTick',[])
h(8) = axes('Position',[.95 ordinate1 .05 height].*s+q);
if setylim
cbar(h(8),151:300, [0 tmpscale(2)]); % use only positive colors (gyorv)
else cbar(h(8),1:300 , [-tmpscale(2) tmpscale(2)]); % use only positive colors (gyorv)
end
%
% Plot delta-mean min and max coherence at each time point on bottom of image
%
h(10) = axes('Units','Normalized','Position',[.1 ordinate1-0.1 .8 .1].*s+q); % plot marginal means below
Emax = max(R); % mean coherence at each time point
Emin = min(R); % mean coherence at each time point
plot(times,Emin, times, Emax, 'LineWidth',g.linewidth); hold on;
plot([times(1) times(length(times))],[0 0],'LineWidth',0.7);
plot([0 0],[-500 500],'--m','LineWidth',g.linewidth);
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[-500 500],'--m','LineWidth',g.linewidth);
end
if ~isnan(g.alpha) && dims(Rboot) > 1
% plot bootstrap significance limits (base mean +/-)
switch dims(Rboot)
case 2, plot(times,mean(Rboot(:,:),1),'g' ,'LineWidth',g.linewidth);
plot(times,mean(Rboot(:,:),1),'k:','LineWidth',g.linewidth);
case 3, plot(times,mean(Rboot(:,:,1),1),'g' ,'LineWidth',g.linewidth);
plot(times,mean(Rboot(:,:,1),1),'k:','LineWidth',g.linewidth);
plot(times,mean(Rboot(:,:,2),1),'g' ,'LineWidth',g.linewidth);
plot(times,mean(Rboot(:,:,2),1),'k:','LineWidth',g.linewidth);
end
axis([min(times) max(times) 0 max([Emax(:)' Rboot(:)'])*1.2])
else
axis([min(times) max(times) 0 max(Emax)*1.2])
end
tick = get(h(10),'YTick');
set(h(10),'YTick',[tick(1) ; tick(length(tick))])
set(h(10),'YAxisLocation','right')
xlabel('Time (ms)')
ylabel('coh.')
%
% Plot mean baseline coherence at each freq on left side of image
%
h(11) = axes('Units','Normalized','Position',[0 ordinate1 .1 height].*s+q); % plot mean spectrum
E = abs(mbase); % baseline mean coherence at each frequency
if ~strcmpi(g.freqscale, 'log')
plot(freqs,E,'b','LineWidth',g.linewidth); % plot mbase
else
semilogx(freqs,E,'b','LineWidth',g.linewidth); % plot mbase
set(h(11),'View',[90 90])
divs = linspace(log(freqs(1)), log(freqs(end)), 10);
set(gca, 'xtickmode', 'manual');
divs = ceil(exp(divs)); divs = unique_bc(divs); % ceil is critical here, round might misalign
% out-of border label with within border ticks
set(gca, 'xtick', divs);
end;
if ~isnan(g.alpha) % plot bootstrap significance limits (base mean +/-)
hold on
if ~strcmpi(g.freqscale, 'log')
switch dims(Rboot)
case 1, plot(freqs,Rboot(:),'g' ,'LineWidth',g.linewidth);
plot(freqs,Rboot(:),'k:','LineWidth',g.linewidth);
case 2, plot(freqs,mean(Rboot(:,:),2),'g' ,'LineWidth',g.linewidth);
plot(freqs,mean(Rboot(:,:),2),'k:','LineWidth',g.linewidth);
case 3, plot(freqs,mean(Rboot(:,:,1),2),'g' ,'LineWidth',g.linewidth);
plot(freqs,mean(Rboot(:,:,1),2),'k:','LineWidth',g.linewidth);
plot(freqs,mean(Rboot(:,:,2),2),'g' ,'LineWidth',g.linewidth);
plot(freqs,mean(Rboot(:,:,2),2),'k:','LineWidth',g.linewidth);
end;
else
switch dims(Rboot)
case 1, semilogy(freqs,Rboot(:),'g' ,'LineWidth',g.linewidth);
semilogy(freqs,Rboot(:),'k:','LineWidth',g.linewidth);
case 2, semilogy(freqs,mean(Rboot(:,:),2),'g' ,'LineWidth',g.linewidth);
semilogy(freqs,mean(Rboot(:,:),2),'k:','LineWidth',g.linewidth);
case 3, semilogy(freqs,mean(Rboot(:,:,1),2),'g' ,'LineWidth',g.linewidth);
semilogy(freqs,mean(Rboot(:,:,1),2),'k:','LineWidth',g.linewidth);
semilogy(freqs,mean(Rboot(:,:,2),2),'g' ,'LineWidth',g.linewidth);
semilogy(freqs,mean(Rboot(:,:,2),2),'k:','LineWidth',g.linewidth);
end;
end;
if ~isnan(max(E))
axis([freqs(1) freqs(end) 0 max([E Rboot(:)'])*1.2]);
end
else % plot marginal mean coherence only
if ~isnan(max(E))
axis([freqs(1) freqs(end) 0 max(E)*1.2]);
end
end
set(gca,'xdir','rev'); % nima
tick = get(h(11),'YTick');
set(h(11),'YTick',[tick(1) ; tick(length(tick))]); % crashes for log
set(h(11),'View',[90 90])
xlabel('Freq. (Hz)')
ylabel('coh.')
end
switch lower(g.plotphase)
case 'on'
%
% Plot coherence phase lags in bottom panel
%
h(13) = axes('Units','Normalized','Position',[.1 ordinate2 .8 height].*s+q);
if setylim
if strcmpi(g.type, 'amp') % currently -1 to 1
maxangle = max(abs(g.amplag)) * mean(times(2:end) - times(1:end-1));
Rangle = Rangle * maxangle;
maxangle = maxangle+5; % so that the min and the max does not mix
else
if strcmp(g.angleunit,'ms') % convert to ms
Rangle = (Rangle/(2*pi)).*repmat(1000./freqs(:)',1,length(times));
maxangle = max(max(abs(Rangle)));
elseif strcmpi(g.angleunit,'deg') % convert to degrees
Rangle = Rangle*180/pi; % convert to degrees
maxangle = 180; % use full-cycle plotting
else
maxangle = pi;
end
end
Rangle(find(Rraw==0)) = 0; % set angle at non-signif coher points to 0
if ~strcmpi(g.freqscale, 'log')
imagesc(times,freqs,Rangle,[-maxangle maxangle]); % plot the coherence phase angles
else
imagesclogy(times,freqs,Rangle,[-maxangle maxangle]); % plot the coherence phase angles
end;
hold on
plot([0 0],[0 freqs(end)],'--m','LineWidth',g.linewidth); % zero-time line
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[0 freqs(end)],'--m','LineWidth',g.linewidth);
end
set(gca,'ydir','norm'); % nima
ylabel('Freq. (Hz)')
xlabel('Time (ms)')
h(14)=axes('Position',[.95 ordinate2 .05 height].*s+q);
cbar(h(14),0,[-maxangle maxangle]); % two-sided colorbar
else
axis off;
text(0, 0.5, 'Real values, no angles');
end
end
if g.plot
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end
if (length(g.title) > 0) % plot title
axes('Position',pos,'Visible','Off');
h(13) = text(-.05,1.01,g.title);
set(h(13),'VerticalAlignment','bottom')
set(h(13),'HorizontalAlignment','left')
set(h(13),'FontSize',g.TITLE_FONT)
end
%
%%%%%%%%%%%%%%% plot topoplot() %%%%%%%%%%%%%%%%%%%%%%%
%
if (~isempty(g.topovec)) && strcmpi(g.plotamp, 'on') && strcmpi(g.plotphase, 'on')
h(15) = subplot('Position',[-.1 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(1),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10, 'chaninfo', g.chaninfo);
else
topoplot(g.topovec(1,:),g.elocs,'electrodes','off', 'chaninfo', g.chaninfo);
end
axis('square')
h(16) = subplot('Position',[.9 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(2),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10, 'chaninfo', g.chaninfo);
else
topoplot(g.topovec(2,:),g.elocs,'electrodes','off', 'chaninfo', g.chaninfo);
end
axis('square')
end
try, axcopy(gcf); catch, end
end
% ---------------
% Plotting curves
% ---------------
function plotallcurves(R, Rboot, times, freqs, mbase, g)
% compute angles
% --------------
Rangle = angle(R);
pos = get(gca,'position'); % plot relative to current axes
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)];
if ~isreal(R)
R = abs(R);
Rraw =R; % raw coherence values
if ~isnan(g.baseline)
R = R - repmat(mbase',[1 g.timesout]); % remove baseline mean
end
else
Rraw = R;
setylim = 0;
end
% time unit
% ---------
if times(end) > 10000
times = times/1000;
timeunit = 's';
else
timeunit = 'ms';
end
% legend
% ------
alllegend = {};
if strcmpi(g.plotmean, 'on') && freqs(1) ~= freqs(end)
alllegend = { [ num2str(freqs(1)) '-' num2str(freqs(end)) 'Hz' ] };
else
for index = 1:length(freqs)
alllegend{index} = [ num2str(freqs(index)) 'Hz' ];
end
end
fprintf('\nNow plotting...\n');
if strcmpi(g.plotamp, 'on')
%
% Plot coherence amplitude in top panel
%
if strcmpi(g.plotphase, 'on'), subplot(2,1,1); end;
if isempty(g.maxamp), g.maxamp = 0; end
plotcurve(times, R, 'maskarray', Rboot, 'title', 'Coherence amplitude', ...
'xlabel', [ 'Time (' timeunit ')' ], 'ylabel', '0-1', 'ylim', g.maxamp, ...
'vert', g.vert, 'marktimes', g.marktimes, 'legend', alllegend, ...
'linewidth', g.linewidth, 'highlightmode', g.highlightmode, 'plotmean', g.plotmean);
end
if strcmpi(g.plotphase, 'on')
%
% Plot coherence phase lags in bottom panel
%
if strcmpi(g.plotamp, 'on'), subplot(2,1,2); end;
plotcurve(times, Rangle/pi*180, 'maskarray', Rboot, 'val2mask', R, 'title', 'Coherence phase', ...
'xlabel', [ 'Time (' timeunit ')' ], 'ylabel', 'Angle (deg.)', 'ylim', [-180 180], ...
'vert', g.vert, 'marktimes', g.marktimes, 'legend', alllegend, ...
'linewidth', g.linewidth, 'highlightmode', g.highlightmode, 'plotmean', g.plotmean);
end
if strcmpi(g.plotamp, 'on') || strcmpi(g.plotphase, 'on')
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end
if (length(g.title) > 0) % plot title
h(13) = textsc(g.title, 'title');
end
%
%%%%%%%%%%%%%%% plot topoplot() %%%%%%%%%%%%%%%%%%%%%%%
%
if (~isempty(g.topovec))
h(15) = subplot('Position',[-.1 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(1),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10);
else
topoplot(g.topovec(1,:),g.elocs,'electrodes','off');
end
axis('square')
h(16) = subplot('Position',[.9 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(2),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10);
else
topoplot(g.topovec(2,:),g.elocs,'electrodes','off');
end
axis('square')
end
try, axcopy(gcf); catch, end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COHERENCE OBSOLETE %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function for coherence initialisation
% -------------------------------------
function Coher = coherinit(nb_points, trials, timesout, type);
Coher.R = zeros(nb_points,timesout); % mean coherence
%Coher.RR = repmat(nan,nb_points,timesout); % initialize with nans
Coher.type = type;
Coher.Rn=zeros(trials,timesout);
switch type
case 'coher',
Coher.cumulX = zeros(nb_points,timesout);
Coher.cumulY = zeros(nb_points,timesout);
case 'phasecoher2',
Coher.cumul = zeros(nb_points,timesout);
end
% function for coherence calculation
% -------------------------------------
%function Coher = cohercomparray(Coher, tmpX, tmpY, trial);
%switch Coher.type
% case 'coher',
% Coher.R = Coher.R + tmpX.*conj(tmpY); % complex coher.
% Coher.cumulXY = Coher.cumulXY + abs(tmpX).*abs(tmpY);
% case 'phasecoher',
% Coher.R = Coher.R + tmpX.*conj(tmpY) ./ (abs(tmpX).*abs(tmpY)); % complex coher.
% Coher.Rn(trial,:) = 1;
%end % ~any(ISNAN)
function [Coher,tmptrialcoh] = cohercomp(Coher, tmpX, tmpY, trial, time);
tmptrialcoh = tmpX.*conj(tmpY);
switch Coher.type
case 'coher',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh; % complex coher.
Coher.cumulX(:,time) = Coher.cumulX(:,time) + abs(tmpX).^2;
Coher.cumulY(:,time) = Coher.cumulY(:,time) + abs(tmpY).^2;
case 'phasecoher2',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh; % complex coher.
Coher.cumul(:,time) = Coher.cumul(:,time) + abs(tmptrialcoh);
case 'phasecoher',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh ./ abs(tmptrialcoh); % complex coher.
%figure; imagesc(abs(tmpX.*conj(tmpY) ./ (abs(tmpX).*abs(tmpY))));
Coher.Rn(trial,time) = Coher.Rn(trial,time)+1;
end % ~any(isnan())
% function for post coherence calculation
% ---------------------------------------
function Coher = cohercomppost(Coher, trials);
switch Coher.type
case 'coher',
Coher.R = Coher.R ./ sqrt(Coher.cumulX) ./ sqrt(Coher.cumulY);
case 'phasecoher2',
Coher.R = Coher.R ./ Coher.cumul;
case 'phasecoher',
Coher.Rn = sum(Coher.Rn, 1);
Coher.R = Coher.R ./ (ones(size(Coher.R,1),1)*Coher.Rn); % coherence magnitude
end
% function for 2 conditions coherence calculation
% -----------------------------------------------
function [coherimage, coherimage1, coherimage2] = coher2conddiff( allsavedcoher, alltrials, cond1trials, type, tfx, tfy);
t1s = alltrials(1:cond1trials);
t2s = alltrials(cond1trials+1:end);
switch type
case 'coher',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) ./ sqrt(sum(tfx(:,:,t1s))) ./ sqrt(sum(tfy(:,:,t1s)));
coherimage2 = sum(allsavedcoher(:,:,t2s),3) ./ sqrt(sum(tfx(:,:,t2s))) ./ sqrt(sum(tfy(:,:,t1s)));
case 'phasecoher2',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) ./ sum(abs(allsavedcoher(:,:,t1s)),3);
coherimage2 = sum(allsavedcoher(:,:,t2s),3) ./ sum(abs(allsavedcoher(:,:,t2s)),3);
case 'phasecoher',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) / cond1trials;
coherimage2 = sum(allsavedcoher(:,:,t2s),3) / (size(allsavedcoher,3)-cond1trials);
end
coherimage = coherimage2 - coherimage1;
function w = hanning(n)
if ~rem(n,2)
w = .5*(1 - cos(2*pi*(1:n/2)'/(n+1)));
w = [w; w(end:-1:1)];
else
w = .5*(1 - cos(2*pi*(1:(n+1)/2)'/(n+1)));
w = [w; w(end-1:-1:1)];
end
function res = dims(array)
res = min(ndims(array), max(size(array,2),size(array,3)));