[422372]: / functions / timefreqfunc / dftfilt3.m

Download this file

209 lines (196 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
% DFTFILT3 - discrete complex wavelet filters
%
% Usage:
% >> [wavelet,cycles,freqresol,timeresol] = dftfilt3( freqs, cycles, srate, varargin)
%
% Inputs:
% freqs - vector of frequencies of interest.
% cycles - cycles array. If cycles=0, then the Hanning tapered Short-term FFT is used.
% If one value is given and cycles>0, all wavelets have
% the same number of cycles. If two values are given, the
% two values are used for the number of cycles at the lowest
% frequency and at the highest frequency, with linear or
% log-linear interpolation between these values for intermediate
% frequencies
% srate - sampling rate (in Hz)
%
% Optional Inputs: Input these as 'key/value pairs.
% 'cycleinc' - ['linear'|'log'] increase mode if [min max] cycles is
% provided in 'cycle' parameter. {default: 'linear'}
% 'winsize' Use this option for Hanning tapered FFT or if you prefer to set the length of the
% wavelets to be equal for all of them (e.g., to set the
% length to 256 samples input: 'winsize',256). {default: [])
% Note: the output 'wavelet' will be a matrix and it may be
% incompatible with current versions of timefreq and newtimef.
% 'timesupport' The number of temporal standard deviation used for wavelet lengths {default: 7)
%
% Output:
% wavelet - cell array or matrix of wavelet filters
% timeresol - temporal resolution of Morlet wavelets.
% freqresol - frequency resolution of Morlet wavelets.
%
% Note: The length of the window is always made odd.
%
% Authors: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 3/28/2003
% Rey Ramirez, SCCN/INC/UCSD, La Jolla, 9/26/2006
% Copyright (C) 3/28/2003 Arnaud Delorme 8, SCCN/INC/UCSD, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
%
% Revision 1.12 2006/09/25 rey r
% Almost complete rewriting of dftfilt2.m, changing both Morlet and Hanning
% DFT to be more in line with conventional implementations.
%
% Revision 1.11 2006/09/07 19:05:34 scott
% further clarified the Morlet/Hanning distinction -sm
%
% Revision 1.10 2006/09/07 18:55:15 scott
% clarified window types in help msg -sm
%
% Revision 1.9 2006/05/05 16:17:36 arno
% implementing cycle array
%
% Revision 1.8 2004/03/04 19:31:03 arno
% email
%
% Revision 1.7 2004/02/25 01:45:55 arno
% sinus test
%
% Revision 1.6 2004/02/15 22:23:08 arno
% implementing morlet wavelet
%
% Revision 1.5 2003/05/09 20:55:10 arno
% adding hanning function
%
% Revision 1.4 2003/04/29 16:02:54 arno
% header typos
%
% Revision 1.3 2003/04/29 01:09:16 arno
% debug imaginary part
%
% Revision 1.2 2003/04/28 23:01:13 arno
% *** empty log message ***
%
% Revision 1.1 2003/04/28 22:46:49 arno
% Initial revision
%
function [wavelet,cycles,freqresol,timeresol] = dftfilt3( freqs, cycles, srate, varargin);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rey fixed all input parameter sorting.
if nargin < 3
error(' A minimum of 3 arguments is required');
end
numargin=length(varargin);
if rem(numargin,2)
error('There is an uneven number key/value inputs. You are probably missing a keyword or its value.')
end
varargin(1:2:end)=lower(varargin(1:2:end));
% Setting default parameter values.
cycleinc='linear';
winsize=[];
timesupport=7; % Setting default of 7 temporal standard deviations for wavelet's length.
for n=1:2:numargin
keyword=varargin{n};
if strcmpi('cycleinc',keyword)
cycleinc=varargin{n+1};
elseif strcmpi('winsize',keyword)
winsize=varargin{n+1};
if ~mod(winsize,2)
winsize=winsize+1; % Always set to odd length wavelets and hanning windows;
end
elseif strcmpi('timesupport',keyword)
timesupport=varargin{n+1};
else
error(['What is ' keyword '? The only legal keywords are: type, cycleinc, winsize, or timesupport.'])
end
end
if isempty(winsize) && cycles(1)==0
error('If you are using a Hanning tapered FFT, please supply the winsize input-pair.')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute number of cycles at each frequency
% ------------------------------------------
type='morlet';
if length(cycles) == 1 && cycles(1)~=0
cycles = cycles*ones(size(freqs));
elseif length(cycles) == 2
if strcmpi(cycleinc, 'log') % cycleinc
cycles = linspace(log(cycles(1)), log(cycles(2)), length(freqs));
cycles = exp(cycles);
%cycles=logspace(log10(cycles(1)),log10(cycles(2)),length(freqs)); %rey
else
cycles = linspace(cycles(1), cycles(2), length(freqs));
end
end
if cycles==0
type='sinus';
end
sp=1/srate; % Rey added this line (i.e., sampling period).
% compute wavelet
for index = 1:length(freqs)
fk=freqs(index);
if strcmpi(type, 'morlet') % Morlet.
fk=fk/srate; % Normalize frequency for textbook equations as in TB97
sigf=fk/cycles(index); % Computing time and frequency standard deviations, resolutions, and normalization constant.
sigt=1./(2*pi*sigf);
A=1./sqrt(sigt*sqrt(pi));
timeresol(index)=2*sigt/srate; % sec
freqresol(index)=2*sigf*srate; % Hz
if isempty(winsize) % bases will be a cell array.
% tneg=[-sp:-sp:-sigt*timesupport/2];
% tpos=[0:sp:sigt*timesupport/2];
% t=[fliplr(tneg) tpos];
t = (0:floor(sigt*timesupport/2)*2)-floor(sigt*timesupport/2); % Always odd; backward compatible
psi=A.*(exp(-(t.^2)./(2*(sigt^2))).*exp(2*i*pi*fk*t));
wavelet{index}=psi; % These are the wavelets with variable number of samples based on temporal standard deviations (sigt).
else % bases will be a matrix.
% tneg=[-sp:-sp:-sp*winsize/2];
% tpos=[0:sp:sp*winsize/2];
% t=[fliplr(tneg) tpos];
t = (0:floor(winsize/2)*2)-floor(winsize/2); % Always odd; backward compatible
psi=A.*(exp(-(t.^2)./(2*(sigt^2))).*exp(2*i*pi*fk*t));
wavelet(index,:)=psi; % These are the wavelets with the same length.
% This is useful for doing time-frequency analysis as a matrix vector or matrix matrix multiplication.
end
elseif strcmpi(type, 'sinus') % Hanning
tneg=[-sp:-sp:-sp*winsize/2];
tpos=[0:sp:sp*winsize/2];
t=[fliplr(tneg) tpos];
win = exp(2*i*pi*fk*t);
wavelet(index,:) = win .* hanning(winsize)';
%wavelet{index} = win .* hanning(winsize)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
% symmetric hanning function
function w = hanning(n)
if ~rem(n,2)
w = .5*(1 - cos(2*pi*(1:n/2)'/(n+1)));
w = [w; w(end:-1:1)];
else
w = .5*(1 - cos(2*pi*(1:(n+1)/2)'/(n+1)));
w = [w; w(end-1:-1:1)];
end