[422372]: / functions / timefreqfunc / crossf.m

Download this file

1458 lines (1345 with data), 59.9 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
% CROSSF - Returns estimates and plots event-related coherence (ERCOH)
% between two input data time series (X,Y). A lower panel (optionally)
% shows the coherence phase difference between the processes.
% In this panel, output by > crossf(X,Y,...);
% 90 degrees (orange) means X leads Y by a quarter cycle.
% -90 degrees (blue) means Y leads X by a quarter cycle.
% Coherence phase units may be radians, degrees, or msec.
% Click on any subplot to view separately and zoom in/out.
%
% Function description:
% Uses EITHER fixed-window, zero-padded FFTs (fastest) OR constant-Q
% 0-padded wavelet DFTs (more even sensitivity across frequencies),
% both Hanning-tapered. Output frequency spacing is the lowest
% frequency ('srate'/'winsize') divided by the 'padratio'.
%
% If an 'alpha' value is given, then bootstrap statistics are
% computed (from a distribution of 'naccu' {200} surrogate baseline
% data epochs) for the baseline epoch, and non-significant features
% of the output plots are zeroed (and shown in green). The baseline
% epoch is all windows with center latencies < the given 'baseline'
% value, or if 'baseboot' is 1, the whole epoch.
% Usage:
% >> [coh,mcoh,timesout,freqsout,cohboot,cohangles] ...
% = crossf(X,Y,frames,tlimits,srate,cycles, ...
% 'key1', 'val1', 'key2', val2' ...);
% Required inputs:
% X = first single-channel data set (1,frames*nepochs)
% Y = second single-channel data set (1,frames*nepochs)
% frames = frames per epoch {default: 750}
% tlimits = [mintime maxtime] (ms) epoch latency limits {def: [-1000 2000]}
% srate = data sampling rate (Hz) {default: 250}
% cycles = 0 -> Use FFTs (with constant window length)
% = >0 -> Number of cycles in each analysis wavelet
% = [cycles expfactor] -> if 0 < expfactor < 1, the number
% of wavelet cycles expands with frequency from cycles
% If expfactor = 1, no expansion; if = 0, constant
% window length (as in FFT) {default: 0}
% Optional Coherence Type:
% 'type' = ['coher'|'phasecoher'] Compute either linear coherence
% ('coher') or phase coherence ('phasecoher') also known
% as phase coupling factor' {default: 'phasecoher'}.
% 'subitc' = ['on'|'off'] subtract stimulus locked Inter-Trial Coherence
% from X and Y. This computes the 'intrinsic' coherence
% X and Y not arising from common synchronization to
% experimental events. See notes. {default: 'off'}
% 'shuffle' = integer indicating the number of estimates to compute
% bootstrap coherence based on shuffled trials. This estimates
% the coherence arising only from time locking of X and Y
% to experimental events (opposite of 'subitc') {default: 0}
% Optional Detrend:
% 'detret' = ['on'|'off'], Linearly detrend data within epochs {def: 'off'}
% 'detrep' = ['on'|'off'], Linearly detrend data across trials {def: 'off'}
%
% Optional FFT/DFT:
% 'winsize' = If cycles==0: data subwindow length (fastest, 2^n<frames);
% if cycles >0: *longest* window length to use. This
% determines the lowest output frequency {default: ~frames/8}
% 'timesout' = Number of output latencies (int<frames-winsize) {def: 200}
% 'padratio' = FFTlength/winsize (2^k) {default: 2}
% Multiplies the number of output frequencies by
% dividing their spacing. When cycles==0, frequency
% spacing is (low_frequency/padratio).
% 'maxfreq' = Maximum frequency (Hz) to plot (& output if cycles>0)
% If cycles==0, all FFT frequencies are output {default: 50}
% 'baseline' = Coherence baseline end latency (ms). NaN -> No baseline
% {default:NaN}
% 'powbase' = Baseline spectrum to log-subtract {default: from data}
%
% Optional Bootstrap:
% 'alpha' = If non-0, compute two-tailed bootstrap significance prob.
% level. Show non-signif output values as green. {def: 0}
% 'naccu' = Number of bootstrap replications to compute {def: 200}
% 'boottype' = ['times'|'timestrials'] Bootstrap type: Either shuffle
% windows ('times') or windows and trials ('timestrials')
% Option 'timestrials' requires more memory {default: 'times'}
% 'memory' = ['low'|'high'] 'low' -> decrease memory use {default: 'high'}
% 'baseboot' = Extent of bootstrap shuffling (0=to 'baseline'; 1=whole epoch)
% If no baseline is given (NaN), extent of bootstrap shuffling
% is the whole epoch {default: 0}
% 'rboot' = Input bootstrap coherence limits (e.g., from CROSSF)
% The bootstrap type should be identical to that used
% to obtain the input limits. {default: compute from data}
% Optional Scalp Map:
% 'topovec' = (2,nchans) matrix, plot scalp maps to plot {default: []}
% ELSE (c1,c2), plot two cartoons showing channel locations.
% 'elocs' = Electrode location structure or file for scalp map
% {default: none}
% 'chaninfo' = Electrode location additional information (nose position...)
% {default: none}
%
% Optional Plot and Compute Features:
% 'compute' = ['matlab'|'c'] Use C subroutines to speed up the
% computation (currently unimplemented) {def: 'matlab'}
% 'savecoher' - [0|1] 1 --> Accumulate the individual trial coherence
% vectors; output them as cohangles {default: 0 = off}
% 'plotamp' = ['on'|'off'], Plot coherence magnitude {def: 'on'}
% 'maxamp' = [real] Set the maximum for the amp. scale {def: auto}
% 'plotphase' = ['on'|'off'], Plot coherence phase angle {def: 'on'}
% 'angleunit' = Phase units: 'ms' -> msec, 'deg' -> degrees,
% or 'rad' -> radians {default: 'deg'}
% 'title' = Optional figure title {default: none}
% 'vert' = Latencies to mark with a dotted vertical line
% {default: none}
% 'linewidth' = Line width for marktimes traces (thick=2, thin=1)
% {default: 2}
% 'cmax' = Maximum amplitude for color scale {def: data limits}
% 'axesfont' = Axes font size {default: 10}
% 'titlefont' = Title font size {default: 8}
%
% Outputs:
% coh = Matrix (nfreqs,timesout) of coherence magnitudes
% mcoh = Vector of mean baseline coherence at each frequency
% timesout = Vector of output latencies (window centers) (ms).
% freqsout = Vector of frequency bin centers (Hz).
% cohboot = Matrix (nfreqs,2) of [lower;upper] coher signif. limits
% if 'boottype' is 'trials', (nfreqs,timesout, 2)
% cohangle = (nfreqs,timesout) matrix of coherence angles (in radians)
% cohangles = (nfreqs,timesout,trials) matrix of single-trial coherence
% angles (in radians), saved and output only if 'savecoher',1
%
% Plot description:
% Assuming both 'plotamp' and 'plotphase' options are 'on' (=default), the upper panel
% presents the magnitude of either phase coherence or linear coherence, depending on
% the 'type' parameter (above). The lower panel presents the coherence phase difference
% (in degrees). Click on any plot to pop up a new window (using 'axcopy()').
% -- The upper left marginal panel shows mean coherence during the baseline period
% (blue), and when significance is set, the significance threshold (dotted black-green).
% -- The horizontal panel under the coherence magnitude image indicates the maximum
% (green) and minimum (blue) coherence values across all frequencies. When significance
% is set (using option 'trials' for 'boottype'), an additional curve indicates the
% significance threshold (dotted black-green).
%
% Notes: 1) When cycles==0, nfreqs is total number of FFT frequencies.
% 2) As noted above: 'blue' coherence angle -> X leads Y; 'red' -> Y leads X
% 3) The 'boottype' should be ideally 'timesframes', but this creates high
% memory demands, so the 'times' method must be used in many cases.
% 4) If 'boottype' is 'trials', the average of the complex bootstrap
% is subtracted from the coherence to compensate for phase differences
% (the average is also subtracted from the bootstrap distribution).
% For other bootstraps, this is not necessary since the phase is random.
% 5) If baseline is non-NaN, the baseline is subtracted from
% the complex coherence. On the left hand side of the coherence
% amplitude image, the baseline is displayed as a magenta line
% (if no baseline is selected, this curve represents the average
% coherence at every given frequency).
% 6) If a out-of-memory error occurs, set the 'memory' option to 'low'
% (Makes computation time slower; Only the 'times' bootstrap method
% can be used in this mode).
%
% Authors: Arnaud Delorme, Sigurd Enghoff & Scott Makeig
% CNL/Salk Institute 1998-2001; SCCN/INC/UCSD, La Jolla, 2002-
%
% See also: TIMEF
% Copyright (C) 8/1/98 Arnaud Delorme, Sigurd Enghoff & Scott Makeig, SCCN/INC/UCSD
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 11-20-98 defined g.linewidth constant -sm
% 04-01-99 made number of frequencies consistent -se
% 06-29-99 fixed constant-Q freq indexing -se
% 08-13-99 added cohangle plotting -sm
% 08-20-99 made bootstrap more efficient -sm
% 08-24-99 allow nan values introduced by possible EVENTLOCK preproc. -sm
% 03-05-2007 eventlock.m deprecated to eegalign.m. -tf
% 03-16-00 added lead/lag interpretation to help msg - sm & eric visser
% 03-16-00 added AXCOPY feature -sm & tpj
% 04-20-00 fixed Rangle sign for wavelets, added verts array -sm
% 01-22-01 corrected help msg when nargin<2 -sm & arno delorme
% 01-25-02 reformated help & license, added links -ad
% 03-09-02 function restructuration -ad
% add 'key', val arguments (+ external baseboot, baseline, color axis, angleunit...)
% add detrending (across time and trials) + 'coher' option for amplitude coherence
% significance only if alpha is given, plotting options in 'plotamp' and 'plotphase'
% 03-16-02 timeout automatically adjusted if too high -ad
% 04-03-02 added new options for bootstrap -ad
% Note: 3 "objects" (Tf, Coher and Boot) are handled by specific functions under Matlab
% (Tf) function Tf = tfinit(...) - create object Time Frequency (Tf) associated with some data
% (Tf) function [Tf, itcvals] = tfitc(...) - compute itc for the selected data
% (Tf) function [Tf, itcvals] = tfitcpost(Tf, trials) - itc normalisation
% (Tf) function [Tf, tmpX] = tfcomp(Tf, trials, times) - compute time freq. decomposition
% (Coher) function Coher = coherinit(...) - initialize coherence object
% (Coher) function Coher = cohercomp(Coher, tmpX, tmpY, trial, time) - compute coherence
% (Coher) function Coher = cohercomppost(Coher, trials) - coherence normalization
% (Boot) function Boot = bootinit(...) - initialize bootstrap object
% (Boot) function Boot = bootcomp(...) - compute bootstrap
% (Boot) function [Boot, Rbootout] = bootcomppost(...) - bootstrap normalization
% and by real objects under C++ (C++ code, incomplete)
function [R,mbase,times,freqs,Rbootout,Rangle, trialcoher, Tfx, Tfy] = crossf(X, Y, frame, tlimits, Fs, varwin, varargin)
%varwin,winsize,nwin,oversmp,maxfreq,alpha,verts,caxmax)
% ------------------------
% Commandline arg defaults:
% ------------------------
DEFAULT_ANGLEUNIT = 'deg'; % angle plotting units - 'rad', 'ms', or 'deg'
DEFAULT_EPOCH = 750; % Frames per epoch
DEFAULT_TIMELIM = [-1000 2000]; % Time range of epochs (ms)
DEFAULT_FS = 250; % Sampling frequency (Hz)
DEFAULT_NWIN = 200; % Number of windows = horizontal resolution
DEFAULT_VARWIN = 0; % Fixed window length or base on cycles.
% =0: fix window length to nwin
% >0: set window length equal varwin cycles
% bounded above by winsize, also determines
% the min. freq. to be computed.
DEFAULT_OVERSMP = 2; % Number of times to oversample = vertical resolution
DEFAULT_MAXFREQ = 50; % Maximum frequency to display (Hz)
DEFAULT_TITLE = 'Event-Related Coherence'; % Figure title
DEFAULT_ALPHA = NaN; % Default two-sided significance probability threshold
if (nargin < 2)
help crossf
return
end
if ~iscell(X)
if (min(size(X))~=1 || length(X)<2)
fprintf('crossf(): X must be a row or column vector.\n');
return
elseif (min(size(Y))~=1 || length(Y)<2)
fprintf('crossf(): Y must be a row or column vector.\n');
return
elseif (length(X) ~= length(Y))
fprintf('crossf(): X and Y must have same length.\n');
return
end
end
if (nargin < 3)
frame = DEFAULT_EPOCH;
elseif (~isnumeric(frame) || length(frame)~=1 || frame~=round(frame))
fprintf('crossf(): Value of frames must be an integer.\n');
return
elseif (frame <= 0)
fprintf('crossf(): Value of frames must be positive.\n');
return
elseif ~iscell(X) && (rem(length(X),frame) ~= 0)
fprintf('crossf(): Length of data vectors must be divisible by frames.\n');
return
end
if (nargin < 4)
tlimits = DEFAULT_TIMELIM;
elseif (~isnumeric(tlimits) || sum(size(tlimits))~=3)
error('crossf(): Value of tlimits must be a vector containing two numbers.');
elseif (tlimits(1) >= tlimits(2))
error('crossf(): tlimits interval must be [min,max].');
end
if (nargin < 5)
Fs = DEFAULT_FS;
elseif (~isnumeric(Fs) || length(Fs)~=1)
error('crossf(): Value of srate must be a number.');
elseif (Fs <= 0)
error('crossf(): Value of srate must be positive.');
end
if (nargin < 6)
varwin = DEFAULT_VARWIN;
elseif (~isnumeric(varwin) || length(varwin)>2)
error('crossf(): Value of cycles must be a number or a (1,2) vector.');
elseif (varwin < 0)
error('crossf(): Value of cycles must be either zero or positive.');
end
% consider structure for these arguments
% --------------------------------------
vararginori = varargin;
for index=1:length(varargin)
if iscell(varargin{index}), varargin{index} = { varargin{index} }; end
end
if ~isempty(varargin)
try, g = struct(varargin{:});
catch, error('Argument error in the {''param'', value} sequence'); end;
else
g = [];
end
try, g.shuffle; catch, g.shuffle = 0; end
try, g.title; catch, g.title = DEFAULT_TITLE; end
try, g.winsize; catch, g.winsize = max(pow2(nextpow2(frame)-3),4); end
try, g.pad; catch, g.pad = max(pow2(nextpow2(g.winsize)),4); end
try, g.timesout; catch, g.timesout = DEFAULT_NWIN; end
try, g.padratio; catch, g.padratio = DEFAULT_OVERSMP; end
try, g.maxfreq; catch, g.maxfreq = DEFAULT_MAXFREQ; end
try, g.topovec; catch, g.topovec = []; end
try, g.elocs; catch, g.elocs = ''; end
try, g.alpha; catch, g.alpha = DEFAULT_ALPHA; end;
try, g.marktimes; catch, g.marktimes = []; end; % default no vertical lines
try, g.marktimes = g.vert; catch, g.vert = []; end; % default no vertical lines
try, g.powbase; catch, g.powbase = nan; end
try, g.rboot; catch, g.rboot = nan; end
try, g.plotamp; catch, g.plotamp = 'on'; end
try, g.plotphase; catch, g.plotphase = 'on'; end
try, g.plotbootsub; catch, g.plotbootsub = 'on'; end
try, g.detrep; catch, g.detrep = 'off'; end
try, g.detret; catch, g.detret = 'off'; end
try, g.baseline; catch, g.baseline = NaN; end
try, g.baseboot; catch, g.baseboot = 0; end
try, g.linewidth; catch, g.linewidth = 2; end
try, g.naccu; catch, g.naccu = 200; end
try, g.angleunit; catch, g.angleunit = DEFAULT_ANGLEUNIT; end
try, g.cmax; catch, g.cmax = 0; end; % 0=use data limits
try, g.type; catch, g.type = 'phasecoher'; end;
try, g.boottype; catch, g.boottype = 'times'; end;
try, g.subitc; catch, g.subitc = 'off'; end
try, g.memory; catch, g.memory = 'high'; end
try, g.compute; catch, g.compute = 'matlab'; end
try, g.maxamp; catch, g.maxamp = []; end
try, g.savecoher; catch, g.savecoher = 0; end
try, g.noinput; catch, g.noinput = 'no'; end
try, g.chaninfo; catch, g.chaninfo = []; end
allfields = fieldnames(g);
for index = 1:length(allfields)
switch allfields{index}
case { 'shuffle' 'title' 'winsize' 'pad' 'timesout' 'padratio' 'maxfreq' 'topovec' 'elocs' 'alpha' ...
'marktimes' 'vert' 'powbase' 'rboot' 'plotamp' 'plotphase' 'plotbootsub' 'detrep' 'detret' ...
'baseline' 'baseboot' 'linewidth' 'naccu' 'angleunit' 'cmax' 'type' 'boottype' 'subitc' ...
'memory' 'compute' 'maxamp' 'savecoher' 'noinput' 'chaninfo' };
case {'plotersp' 'plotitc' }, disp(['crossf warning: timef option ''' allfields{index} ''' ignored']);
otherwise disp(['crossf error: unrecognized option ''' allfields{index} '''']); beep; return;
end
end
g.tlimits = tlimits;
g.frame = frame;
g.srate = Fs;
g.cycles = varwin(1);
if length(varwin)>1
g.cyclesfact = varwin(2);
else
g.cyclesfact = 1;
end
g.type = lower(g.type);
g.boottype = lower(g.boottype);
g.detrep = lower(g.detrep);
g.detret = lower(g.detret);
g.plotphase = lower(g.plotphase);
g.plotbootsub = lower(g.plotbootsub);
g.subitc = lower(g.subitc);
g.plotamp = lower(g.plotamp);
g.shuffle = lower(g.shuffle);
g.compute = lower(g.compute);
g.AXES_FONT = 10;
g.TITLE_FONT = 14;
% testing arguments consistency
% -----------------------------
if (~ischar(g.title))
error('Title must be a string.');
end
if (~isnumeric(g.winsize) || length(g.winsize)~=1 || g.winsize~=round(g.winsize))
error('Value of winsize must be an integer number.');
elseif (g.winsize <= 0)
error('Value of winsize must be positive.');
elseif (g.cycles == 0 && pow2(nextpow2(g.winsize)) ~= g.winsize)
error('Value of winsize must be an integer power of two [1,2,4,8,16,...]');
elseif (g.winsize > g.frame)
error('Value of winsize must be less than frame length.');
end
if (~isnumeric(g.timesout) || length(g.timesout)~=1 || g.timesout~=round(g.timesout))
error('Value of timesout must be an integer number.');
elseif (g.timesout <= 0)
error('Value of timesout must be positive.');
end
if (g.timesout > g.frame-g.winsize)
g.timesout = g.frame-g.winsize;
disp(['Value of timesout must be <= frame-winsize, timeout adjusted to ' int2str(g.timesout) ]);
end
if (~isnumeric(g.padratio) || length(g.padratio)~=1 || g.padratio~=round(g.padratio))
error('Value of padratio must be an integer.');
elseif (g.padratio <= 0)
error('Value of padratio must be positive.');
elseif (pow2(nextpow2(g.padratio)) ~= g.padratio)
error('Value of padratio must be an integer power of two [1,2,4,8,16,...]');
end
if (~isnumeric(g.maxfreq) || length(g.maxfreq)~=1)
error('Value of g.maxfreq must be a number.');
elseif (g.maxfreq <= 0)
error('Value of g.maxfreq must be positive.');
elseif (g.maxfreq > Fs/2)
fprintf('Warning: input value of g.maxfreq larger that Nyquist frequency %3.4 Hz\n\n',Fs/2);
end
if isempty(g.topovec)
g.topovec = [];
elseif min(size(g.topovec))==1
g.topovec = g.topovec(:);
if size(g.topovec,1)~=2
error('topovec must be a row or column vector.');
end
end
if isempty(g.elocs)
g.elocs = '';
elseif (~ischar(g.elocs)) && ~isstruct(g.elocs)
error('Channel location file must be a valid text file.');
end
if (~isnumeric(g.alpha) || length(g.alpha)~=1)
error('timef(): Value of g.alpha must be a number.\n');
elseif (round(g.naccu*g.alpha) < 2)
fprintf('Value of g.alpha is out of the normal range [%g,0.5]\n',2/g.naccu);
g.naccu = round(2/g.alpha);
fprintf(' Increasing the number of bootstrap iterations to %d\n',g.naccu);
end
if g.alpha>0.5 || g.alpha<=0
error('Value of g.alpha is out of the allowed range (0.00,0.5).');
end
if ~isnan(g.alpha)
if g.baseboot > 0
fprintf('Bootstrap analysis will use data in baseline (pre-0) subwindows only.\n')
else
fprintf('Bootstrap analysis will use data in all subwindows.\n')
end
end
switch g.angleunit
case { 'rad', 'ms', 'deg' },;
otherwise error('Angleunit must be either ''rad'', ''deg'', or ''ms''');
end;
switch g.type
case { 'coher', 'phasecoher' 'phasecoher2' },;
otherwise error('Type must be either ''coher'' or ''phasecoher''');
end;
switch g.boottype
case { 'times' 'timestrials' 'trials'},;
otherwise error('Boot type must be either ''times'', ''trials'' or ''timestrials''');
end;
if (~isnumeric(g.shuffle))
error('Shuffle argument type must be numeric');
end
switch g.memory
case { 'low', 'high' },;
otherwise error('memory must be either ''low'' or ''high''');
end
if strcmp(g.memory, 'low') && ~strcmp(g.boottype, 'times')
error(['Bootstrap type ''' g.boottype ''' cannot be used in low memory mode']);
end
switch g.compute
case { 'matlab', 'c' },;
otherwise error('compute must be either ''matlab'' or ''c''');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compare 2 conditions
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if iscell(X)
if length(X) ~= 2 || length(Y) ~= 2
error('crossf: to compare conditions, X and Y input must be 2-elements cell arrays');
end
if ~strcmp(g.boottype, 'times')
disp('crossf warning: The significance bootstrap type is irrelevant when comparing conditions');
end
for index = 1:2:length(vararginori)
if index<=length(vararginori) % needed: if elements are deleted
%if strcmp(vararginori{index}, 'alpha'), vararginori(index:index+1) = [];
if strcmp(vararginori{index}, 'title'), vararginori(index:index+1) = [];
end
end
end
if iscell(g.title)
if length(g.title) <= 2,
g.title{3} = 'Condition 2 - condition 1';
end
else
g.title = { 'Condition 1', 'Condition 2', 'Condition 2 - condition 1' };
end
fprintf('Running crossf on condition 1 *********************\n');
fprintf('Note: If an out-of-memory error occurs, try reducing the\n');
fprintf(' number of time points or number of frequencies\n');
if ~strcmp(g.type, 'coher')
fprintf('Note: Type ''coher'' takes 3 times as much memory as other options!)\n');
end
figure;
subplot(1,3,1); title(g.title{1});
if ~strcmp(g.type, 'coher')
[R1,mbase,times,freqs,Rbootout1,Rangle1, savecoher1] = crossf(X{1}, Y{1}, ...
frame, tlimits, Fs, varwin, 'savecoher', 1, 'title', ' ',vararginori{:});
else
[R1,mbase,times,freqs,Rbootout1,Rangle1, savecoher1, Tfx1, Tfy1] = crossf(X{1}, Y{1}, ...
frame, tlimits, Fs, varwin, 'savecoher', 1,'title', ' ',vararginori{:});
end
R1 = R1.*exp(j*Rangle1); % output Rangle is in radians
% Asking user for memory limitations
% if ~strcmp(g.noinput, 'yes')
% tmp = whos('Tfx1');
% fprintf('This function will require an additional %d bytes, do you wish\n', ...
% tmp.bytes*6+size(savecoher1,1)*size(savecoher1,2)*g.naccu*8);
% res = input('to continue (y/n) (use the ''noinput'' option to disable this message):', 's');
% if res == 'n', return; end
% end
fprintf('\nRunning crossf on condition 2 *********************\n');
subplot(1,3,2); title(g.title{2});
if ~strcmp(g.type, 'coher')
[R2,mbase,times,freqs,Rbootout2,Rangle2, savecoher2] = crossf(X{2}, Y{2}, ...
frame, tlimits, Fs, varwin,'savecoher', 1, 'title', ' ',vararginori{:});
else
[R2,mbase,times,freqs,Rbootout2,Rangle2, savecoher2, Tfx2, Tfy2] = crossf(X{2}, Y{2}, ...
frame, tlimits, Fs, varwin,'savecoher', 1, 'title', ' ',vararginori{:});
end
R2 = R2.*exp(j*Rangle2); % output Rangle is in radians
subplot(1,3,3); title(g.title{3});
if isnan(g.alpha)
plotall(R2-R1, [], [], times, freqs, mbase, find(freqs <= g.maxfreq), g);
else
% accumulate coherence images (all arrays [nb_points * timesout * trials])
% ---------------------------
allsavedcoher = zeros(size(savecoher1,1), ...
size(savecoher1,2), ...
size(savecoher1,3)+size(savecoher2,3));
allsavedcoher(:,:,1:size(savecoher1,3)) = savecoher1;
allsavedcoher(:,:,size(savecoher1,3)+1:end) = savecoher2;
clear savecoher1 savecoher2;
if strcmp(g.type, 'coher')
alltfx = zeros(size(Tfx1,1), size(Tfx2,2), size(Tfx1,3)+size(Tfx2,3));
alltfx(:,:,1:size(Tfx1,3)) = Tfx1;
alltfx(:,:,size(Tfx1,3)+1:end) = Tfx2;
clear Tfx1 Tfx2;
alltfy = zeros(size(Tfy1,1), size(Tfy2,2), size(Tfy1,3)+size(Tfy2,3));
alltfy(:,:,1:size(Tfy1,3)) = Tfy1;
alltfy(:,:,size(Tfy1,3)+1:end) = Tfy2;
clear Tfy1 Tfy2;
end
coherimages = zeros(size(allsavedcoher,1), size(allsavedcoher,2), g.naccu);
cond1trials = length(X{1})/g.frame;
cond2trials = length(X{2})/g.frame;
alltrials = [1:cond1trials+cond2trials];
fprintf('Accumulating bootstrap:');
% preprocess data
% ---------------
switch g.type
case 'coher', % take the square of alltfx and alltfy
alltfx = alltfx.^2;
alltfy = alltfy.^2;
case 'phasecoher', % normalize
allsavedcoher = allsavedcoher ./ abs(allsavedcoher);
case 'phasecoher2', % don't do anything
end
if strcmp(g.type, 'coher')
[coherdiff coher1 coher2] = coher2conddiff( allsavedcoher, alltrials, ...
cond1trials, g.type, alltfx, alltfy);
else
[coherdiff coher1 coher2] = coher2conddiff( allsavedcoher, alltrials, ...
cond1trials, g.type);
end
%figure; g.alpha = NaN; & to check that the new images are the same as the original
%subplot(1,3,1); plotall(coher1, [], [], times, freqs, mbase, find(freqs <= g.maxfreq), g);
%subplot(1,3,2); plotall(coher2, [], [], times, freqs, mbase, find(freqs <= g.maxfreq), g);
%return;
for index=1:g.naccu
if rem(index,10) == 0, fprintf(' %d',index); end
if rem(index,120) == 0, fprintf('\n'); end
if strcmp(g.type, 'coher')
coherimages(:,:,index) = coher2conddiff( allsavedcoher, shuffle(alltrials), ...
cond1trials, g.type, alltfx, alltfy);
else
coherimages(:,:,index) = coher2conddiff( allsavedcoher, shuffle(alltrials), ...
cond1trials, g.type);
end
end
fprintf('\n');
% create articially a Bootstrap object to compute significance
Boot = bootinit( [], size(allsavedcoher,1), g.timesout, g.naccu, 0, g.baseboot, ...
'noboottype', g.alpha, g.rboot);
Boot.Coherboot.R = coherimages;
Boot = bootcomppost(Boot, [], [], []);
g.title = '';
plotall(coherdiff, Boot.Coherboot.R, Boot.Rsignif, times, freqs, mbase, ...
find(freqs <= g.maxfreq), g);
end
return; % ********************************** END PROCESSING TWO CONDITIONS
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shuffle trials if necessary
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if g.shuffle ~= 0
fprintf('x and y data trials being shuffled %d times\n',g.shuffle);
XX = reshape(X, 1, frame, length(X)/g.frame);
YY = Y;
X = [];
Y = [];
for index = 1:g.shuffle
XX = shuffle(XX,3);
X = [X XX(:,:)];
Y = [Y YY];
end
end
% detrend over epochs (trials) if requested
% -----------------------------------------
switch g.detrep
case 'on'
X = reshape(X, g.frame, length(X)/g.frame);
X = X - mean(X,2)*ones(1, length(X(:))/g.frame);
Y = reshape(Y, g.frame, length(Y)/g.frame);
Y = Y - mean(Y,2)*ones(1, length(Y(:))/g.frame);
end;
% time limits
wintime = 500*g.winsize/g.srate;
times = [g.tlimits(1)+wintime:(g.tlimits(2)-g.tlimits(1)-2*wintime)/(g.timesout-1):g.tlimits(2)-wintime];
%%%%%%%%%%
% baseline
%%%%%%%%%%
if ~isnan(g.baseline)
baseln = find(times < g.baseline); % subtract means of pre-0 (centered) windows
if isempty(baseln)
baseln = 1:length(times); % use all times as baseline
disp('Bootstrap baseline empty, using the whole epoch.');
end
baselength = length(baseln);
else
baseln = 1:length(times); % use all times as baseline
baselength = length(times); % used for bootstrap
end
%%%%%%%%%%%%%%%%%%%%
% Initialize objects
%%%%%%%%%%%%%%%%%%%%
tmpsaveall = (~isnan(g.alpha) & isnan(g.rboot) & strcmp(g.memory, 'high')) ...
| (strcmp(g.subitc, 'on') & strcmp(g.memory, 'high'));
trials = length(X)/g.frame;
if ~strcmp(g.compute, 'c')
Tfx = tfinit(X, g.timesout, g.winsize, g.cycles, g.frame, g.padratio, g.detret, ...
g.srate, g.maxfreq, g.subitc, g.type, g.cyclesfact, tmpsaveall);
Tfy = tfinit(Y, g.timesout, g.winsize, g.cycles, g.frame, g.padratio, g.detret, ...
g.srate, g.maxfreq, g.subitc, g.type, g.cyclesfact, tmpsaveall);
Coher = coherinit(Tfx.nb_points, trials, g.timesout, g.type);
Coherboot = coherinit(Tfx.nb_points, trials, g.naccu , g.type);
Boot = bootinit( Coherboot, Tfx.nb_points, g.timesout, g.naccu, baselength, ...
g.baseboot, g.boottype, g.alpha, g.rboot);
freqs = Tfx.freqs;
dispf = find(freqs <= g.maxfreq);
freqs = freqs(dispf);
else
freqs = g.srate*g.cycles/g.winsize*[2:2/g.padratio:g.winsize]/2;
end
dispf = find(Tfx.freqs <= g.maxfreq);
%-------------
% Reserve space
%-------------
% R = zeros(tfx.nb_points,g.timesout); % mean coherence
% RR = repmat(nan,tfx.nb_points,g.timesout); % initialize with nans
% Rboot = zeros(tfx.nb_points,g.naccu); % summed bootstrap coher
% switch g.type
% case 'coher',
% cumulXY = zeros(tfx.nb_points,g.timesout);
% cumulXYboot = zeros(tfx.nb_points,g.naccu);
% end;
% if g.bootsub > 0
% Rboottrial = zeros(tfx.nb_points, g.timesout, g.bootsub); % summed bootstrap coher
% cumulXYboottrial = zeros(tfx.nb_points, g.timesout, g.bootsub);
% end
% if ~isnan(g.alpha) & isnan(g.rboot)
% tf.tmpalltimes = repmat(nan,tfx.nb_points,g.timesout);
% end
% --------------------
% Display text to user
% --------------------
fprintf('\nComputing Event-Related ');
switch g.type
case 'phasecoher', fprintf('Phase Coherence (ITC) images for %d trials.\n',length(X)/g.frame);
case 'phasecoher2', fprintf('Phase Coherence 2 (ITC) images for %d trials.\n',length(X)/g.frame);
case 'coher', fprintf('Linear Coherence (ITC) images for %d trials.\n',length(X)/g.frame);
end
fprintf('The trial latency range is from %4.5g ms before to %4.5g ms after\n the time-locking event.\n', g.tlimits(1),g.tlimits(2));
fprintf('The frequency range displayed will be %g-%g Hz.\n',min(freqs),g.maxfreq);
if ~isnan(g.baseline)
if length(baseln) == length(times)
fprintf('Using the full trial latency range as baseline.\n');
else
fprintf('Using trial latencies from %4.5g ms to %4.5g ms as baseline.\n', g.tlimits,g.baseline);
end
else
fprintf('No baseline time range was specified.\n');
end
if g.cycles==0
fprintf('The data window size will be %d samples (%g ms).\n',g.winsize,2*wintime);
fprintf('The FFT length will be %d samples\n',g.winsize*g.padratio);
else
fprintf('The window size will be %2.3g cycles.\n',g.cycles);
fprintf('The maximum window size will be %d samples (%g ms).\n',g.winsize,2*wintime);
end
fprintf('The window will be applied %d times\n',g.timesout);
fprintf(' with an average step size of %2.2g samples (%2.4g ms).\n', Tfx.stp,1000*Tfx.stp/g.srate);
fprintf('Results will be oversampled %d times.\n',g.padratio);
if ~isnan(g.alpha)
fprintf('Bootstrap confidence limits will be computed based on alpha = %g\n', g.alpha);
else
fprintf('Bootstrap confidence limits will NOT be computed.\n');
end
switch g.plotphase
case 'on',
if strcmp(g.angleunit,'deg')
fprintf(['Coherence angles will be imaged in degrees.\n']);
elseif strcmp(g.angleunit,'rad')
fprintf(['Coherence angles will be imaged in radians.\n']);
elseif strcmp(g.angleunit,'ms')
fprintf(['Coherence angles will be imaged in ms.\n']);
end
end
fprintf('\nProcessing trial (of %d): ',trials);
% firstboot = 1;
% Rn=zeros(trials,g.timesout);
% X = X(:)'; % make X and Y column vectors
% Y = Y(:)';
% tfy = tfx;
if strcmp(g.compute, 'c')
% C PART
filename = [ 'tmpcrossf' num2str(round(rand(1)*1000)) ];
f = fopen([ filename '.in'], 'w');
fwrite(f, tmpsaveall, 'int32');
fwrite(f, g.detret, 'int32');
fwrite(f, g.srate, 'int32');
fwrite(f, g.maxfreq, 'int32');
fwrite(f, g.padratio, 'int32');
fwrite(f, g.cycles, 'int32');
fwrite(f, g.winsize, 'int32');
fwrite(f, g.timesout, 'int32');
fwrite(f, g.subitc, 'int32');
fwrite(f, g.type, 'int32');
fwrite(f, trials, 'int32');
fwrite(f, g.naccu, 'int32');
fwrite(f, length(X), 'int32');
fwrite(f, X, 'double');
fwrite(f, Y, 'double');
fclose(f);
command = [ '!cppcrosff ' filename '.in ' filename '.out' ];
eval(command);
f = fopen([ filename '.out'], 'r');
size1 = fread(f, 'int32', 1);
size2 = fread(f, 'int32', 1);
Rreal = fread(f, 'double', [size1 size2]);
Rimg = fread(f, 'double', [size1 size2]);
Coher.R = Rreal + j*Rimg;
Boot.Coherboot.R = [];
Boot.Rsignif = [];
else
% ------------------------
% MATLAB PART
% compute ITC if necessary
% ------------------------
if strcmp(g.subitc, 'on')
for t=1:trials
if rem(t,10) == 0, fprintf(' %d',t); end
if rem(t,120) == 0, fprintf('\n'); end
Tfx = tfitc( Tfx, t, 1:g.timesout);
Tfy = tfitc( Tfy, t, 1:g.timesout);
end;
fprintf('\n');
Tfx = tfitcpost( Tfx, trials);
Tfy = tfitcpost( Tfy, trials);
end
% ---------
% Main loop
% ---------
if g.savecoher,
trialcoher = zeros(Tfx.nb_points, g.timesout, trials);
else
trialcoher = [];
end
for t=1:trials
if rem(t,10) == 0, fprintf(' %d',t); end
if rem(t,120) == 0, fprintf('\n'); end
Tfx = tfcomp( Tfx, t, 1:g.timesout);
Tfy = tfcomp( Tfy, t, 1:g.timesout);
if g.savecoher
[Coher trialcoher(:,:,t)] = cohercomp( Coher, Tfx.tmpalltimes, ...
Tfy.tmpalltimes, t, 1:g.timesout);
else
Coher = cohercomp( Coher, Tfx.tmpalltimes, Tfy.tmpalltimes, t, 1:g.timesout);
end
Boot = bootcomp( Boot, Coher.Rn(t,:), Tfx.tmpalltimes, Tfy.tmpalltimes);
end % t = trial
[Boot Rbootout] = bootcomppost(Boot, Coher.Rn, Tfx.tmpall, Tfy.tmpall);
% Note that the bootstrap thresholding is actually performed
% in the display subfunction plotall()
Coher = cohercomppost(Coher, trials);
end
% ----------------------------------
% If coherence, perform the division
% ----------------------------------
% switch g.type
% case 'coher',
% R = R ./ cumulXY;
% if ~isnan(g.alpha) & isnan(g.rboot)
% Rboot = Rboot ./ cumulXYboot;
% end
% if g.bootsub > 0
% Rboottrial = Rboottrial ./ cumulXYboottrial;
% end
% case 'phasecoher',
% Rn = sum(Rn, 1);
% R = R ./ (ones(size(R,1),1)*Rn); % coherence magnitude
% if ~isnan(g.alpha) & isnan(g.rboot)
% Rboot = Rboot / trials;
% end
% if g.bootsub > 0
% Rboottrial = Rboottrial / trials;
% end
% end
% ----------------
% Compute baseline
% ----------------
mbase = mean(abs(Coher.R(:,baseln)')); % mean baseline coherence magnitude
% ---------------
% Plot everything
% ---------------
plotall(Coher.R, Boot.Coherboot.R, Boot.Rsignif, times, freqs, mbase, dispf, g);
% --------------------------------------
% Convert output Rangle to degrees or ms - Disabled to keep original default: radians output
% --------------------------------------
% Rangle = angle(Coher.R); % returns radians
% if strcmp(g.angleunit,'ms') % convert to ms
% Rangle = (Rangle/(2*pi)).*repmat(1000./freqs(dispf)',1,length(times));
% elseif strcmp(g.angleunit,'deg') % convert to deg
% Rangle = Rangle*180/pi; % convert to degrees
% else % angleunit is 'rad'
% % Rangle = Rangle;
% end
% Rangle(find(Rraw==0)) = 0; % mask for significance - set angle at non-signif coher points to 0
R = abs(Coher.R);
Rsignif = Boot.Rsignif;
Tfx = permute(Tfx.tmpall, [3 2 1]); % from [trials timesout nb_points]
% to [nb_points timesout trials]
Tfy = permute(Tfy.tmpall, [3 2 1]);
return; % end crossf() *************************************************
%
% CROSSF plotting functions
% ----------------------------------------------------------------------
function plotall(R, Rboot, Rsignif, times, freqs, mbase, dispf, g)
switch lower(g.plotphase)
case 'on',
switch lower(g.plotamp),
case 'on', ordinate1 = 0.67; ordinate2 = 0.1; height = 0.33; g.plot = 1;
case 'off', ordinate2 = 0.1; height = 0.9; g.plot = 1;
end;
case 'off', ordinate1 = 0.1; height = 0.9;
switch lower(g.plotamp),
case 'on', ordinate1 = 0.1; height = 0.9; g.plot = 1;
case 'off', g.plot = 0;
end;
end;
%
% Compute cross-spectral angles
% -----------------------------
Rangle = angle(R); % returns radians
%
% Optionally convert Rangle to degrees or ms
% ------------------------------------------
if strcmp(g.angleunit,'ms') % convert to ms
Rangle = (Rangle/(2*pi)).*repmat(1000./freqs(dispf)',1,length(times));
maxangle = max(max(abs(Rangle)));
elseif strcmp(g.angleunit,'deg') % convert to degrees
Rangle = Rangle*180/pi; % convert to degrees
maxangle = 180; % use full-cycle plotting
else
maxangle = pi; % radians
end
R = abs(R);
% if ~isnan(g.baseline)
% R = R - repmat(mbase',[1 g.timesout]); % remove baseline mean
% end
Rraw = R; % raw coherence (e.g., coherency) magnitude values output
if g.plot
fprintf('\nNow plotting...\n');
set(gcf,'DefaultAxesFontSize',g.AXES_FONT)
colormap(jet(256));
pos = get(gca,'position'); % plot relative to current axes
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)];
axis('off')
end
switch lower(g.plotamp)
case 'on'
%
% Image the coherence [% perturbations]
%
RR = R;
if ~isnan(g.alpha) % zero out (and 'green out') nonsignif. R values
RR(find(RR < repmat(Rboot(:),[1 g.timesout]))) = 0;
Rraw(find(repmat(Rsignif(:),[1,size(Rraw,2)])>=Rraw))=0;
end
if g.cmax == 0
coh_caxis = max(max(R(dispf,:)))*[-1 1];
else
coh_caxis = g.cmax*[-1 1];
end
h(6) = axes('Units','Normalized', 'Position',[.1 ordinate1 .8 height].*s+q);
map=hsv(300); % install circular color map - green=0, yellow, orng, red, violet = max
% cyan, blue, violet = min
map = flipud([map(251:end,:);map(1:250,:)]);
map(151,:) = map(151,:)*0.9; % tone down the (0=) green!
colormap(map);
imagesc(times,freqs(dispf),RR(dispf,:),coh_caxis); % plot the coherence image
if ~isempty(g.maxamp)
caxis([-g.maxamp g.maxamp]);
end
tmpscale = caxis;
hold on
plot([0 0],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth)
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth);
end
hold off
set(h(6),'YTickLabel',[],'YTick',[])
set(h(6),'XTickLabel',[],'XTick',[])
%title('Event-Related Coherence')
h(8) = axes('Position',[.95 ordinate1 .05 height].*s+q);
cbar(h(8),151:300, [0 tmpscale(2)]); % use only positive colors (gyorv)
%
% Plot delta-mean min and max coherence at each time point on bottom of image
%
h(10) = axes('Units','Normalized','Position',[.1 ordinate1-0.1 .8 .1].*s+q);
% plot marginal means below
Emax = max(R(dispf,:)); % mean coherence at each time point
Emin = min(R(dispf,:)); % mean coherence at each time point
plot(times,Emin, times, Emax, 'LineWidth',g.linewidth); hold on;
plot([times(1) times(length(times))],[0 0],'LineWidth',0.7);
plot([0 0],[-500 500],'--m','LineWidth',g.linewidth);
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[-500 500],'--m','LineWidth',g.linewidth);
end
if ~isnan(g.alpha) && strcmp(g.boottype, 'trials')
% plot bootstrap significance limits (base mean +/-)
plot(times,mean(Rboot(dispf,:)),'g','LineWidth',g.linewidth); hold on;
plot(times,mean(Rsignif(dispf,:)),'k:','LineWidth',g.linewidth);
axis([min(times) max(times) 0 max([Emax(:)' Rsignif(:)'])*1.2])
else
axis([min(times) max(times) 0 max(Emax)*1.2])
end
tick = get(h(10),'YTick');
set(h(10),'YTick',[tick(1) ; tick(length(tick))])
set(h(10),'YAxisLocation','right')
xlabel('Time (ms)')
ylabel('coh.')
%
% Plot mean baseline coherence at each freq on left side of image
%
h(11) = axes('Units','Normalized','Position',[0 ordinate1 .1 height].*s+q);
% plot mean spectrum
E = abs(mbase(dispf)); % baseline mean coherence at each frequency
plot(freqs(dispf),E,'LineWidth',g.linewidth); % plot mbase
if ~isnan(g.alpha) % plot bootstrap significance limits (base mean +/-)
hold on
% plot(freqs(dispf),Rboot(:,dispf)+[E;E],'g','LineWidth',g.linewidth);
plot(freqs(dispf),mean(Rboot (dispf,:),2),'g','LineWidth',g.linewidth);
plot(freqs(dispf),mean(Rsignif(dispf,:),2),'k:','LineWidth',g.linewidth);
axis([freqs(1) freqs(max(dispf)) 0 max([E Rsignif(:)'])*1.2]);
else % plot marginal mean coherence only
if ~isnan(max(E))
axis([freqs(1) freqs(max(dispf)) 0 max(E)*1.2]);
end
end
tick = get(h(11),'YTick');
set(h(11),'YTick',[tick(1) ; tick(length(tick))])
set(h(11),'View',[90 90])
xlabel('Freq. (Hz)')
ylabel('coh.')
end
switch lower(g.plotphase)
case 'on'
%
% Plot coherence phase lags in bottom panel
%
h(13) = axes('Units','Normalized','Position',[.1 ordinate2 .8 height].*s+q);
Rangle(find(Rraw==0)) = 0; % when plotting, mask for significance
% = set angle at non-signif coher points to 0
imagesc(times,freqs(dispf),Rangle(dispf,:),[-maxangle maxangle]); % plot the
hold on % coherence phase angles
plot([0 0],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth); % zero-time line
for i=1:length(g.marktimes)
plot([g.marktimes(i) g.marktimes(i)],[0 freqs(max(dispf))],'--m','LineWidth',g.linewidth);
end
ylabel('Freq. (Hz)')
xlabel('Time (ms)')
h(14)=axes('Position',[.95 ordinate2 .05 height].*s+q);
cbar(h(14),0,[-maxangle maxangle]); % two-sided colorbar
end
if g.plot
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end
if (length(g.title) > 0) % plot title
if h(6) ~= 0, axes(h(6)); else axes(h(13)); end
%h = subplot('Position',[0 0 1 1].*s+q, 'Visible','Off');
%h(13) = text(-.05,1.01,g.title);
h(13) = title(g.title);
%set(h(13),'VerticalAlignment','bottom')
%set(h(13),'HorizontalAlignment','left')
set(h(13),'FontSize',g.TITLE_FONT);
end
%
%%%%%%%%%%%%%%% plot topoplot() %%%%%%%%%%%%%%%%%%%%%%%
%
if (~isempty(g.topovec))
h(15) = subplot('Position',[-.1 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(1),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10, 'chaninfo', g.chaninfo);
else
topoplot(g.topovec(1,:),g.elocs,'electrodes','off', 'chaninfo', g.chaninfo);
end
axis('square')
h(16) = subplot('Position',[.9 .43 .2 .14].*s+q);
if size(g.topovec,2) <= 2
topoplot(g.topovec(2),g.elocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10, 'chaninfo', g.chaninfo);
else
topoplot(g.topovec(2,:),g.elocs,'electrodes','off', 'chaninfo', g.chaninfo);
end
axis('square')
end
axcopy(gcf);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TIME FREQUENCY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function for time freq initialisation
% -------------------------------------
function Tf = tfinit(X, timesout, winsize, ...
cycles, frame, padratio, detret, srate, maxfreq, subitc, type, cyclesfact, saveall);
Tf.X = X(:)'; % make X column vectors
Tf.winsize = winsize;
Tf.cycles = cycles;
Tf.frame = frame;
Tf.padratio = padratio;
Tf.detret = detret;
Tf.stp = (frame-winsize)/(timesout-1);
Tf.subitc = subitc; % for ITC
Tf.type = type; % for ITC
Tf.saveall = saveall;
if (Tf.cycles == 0) %%%%%%%%%%%%%% constant window-length FFTs %%%%%%%%%%%%%%%%
% Tf.freqs = srate/winsize*[1:2/padratio:winsize]/2; % incorrect for padratio > 2
Tf.freqs = linspace(0, srate/2, length([1:2/padratio:winsize])+1);
Tf.freqs = Tf.freqs(2:end);
Tf.win = hanning(winsize);
Tf.nb_points = padratio*winsize/2;
else % %%%%%%%%%%%%%%%%%% Constant-Q (wavelet) DFTs %%%%%%%%%%%%%%%%%%%%%%%%%%%%
Tf.freqs = srate*cycles/winsize*[2:2/padratio:winsize]/2;
Tf.win = dftfilt(winsize,maxfreq/srate,cycles,padratio,cyclesfact);
Tf.nb_points = size(Tf.win,2);
end
Tf.tmpalltimes = zeros(Tf.nb_points, timesout);
trials = length(X)/frame;
if saveall
Tf.tmpall = repmat(nan,[trials timesout Tf.nb_points]);
else
Tf.tmpall = [];
end
Tf.tmpallbool = zeros(trials,timesout);
Tf.ITCdone = 0;
if Tf.subitc
Tf.ITC = zeros(Tf.nb_points, timesout);
switch Tf.type,
case { 'coher' 'phasecoher2' }
Tf.ITCcumul = zeros(Tf.nb_points, timesout);
end
end
% function for itc
% ----------------
function [Tf, itcvals] = tfitc(Tf, trials, times);
Tf = tfcomp(Tf, trials, times);
switch Tf.type
case 'coher',
Tf.ITC(:,times) = Tf.ITC(:,times) + Tf.tmpalltimes; % complex coher.
Tf.ITCcumul(:,times) = Tf.ITCcumul(:,times)+abs(Tf.tmpalltimes).^2;
case 'phasecoher2',
Tf.ITC(:,times) = Tf.ITC(:,times) + Tf.tmpalltimes; % complex coher.
Tf.ITCcumul(:,times) = Tf.ITCcumul(:,times)+abs(Tf.tmpalltimes);
case 'phasecoher',
Tf.ITC(:,times) = Tf.ITC(:,times) + Tf.tmpalltimes ./ abs(Tf.tmpalltimes);
% complex coher.
end % ~any(isnan())
return;
function [Tf, itcvals] = tfitcpost(Tf, trials);
switch Tf.type
case 'coher', Tf.ITC = Tf.ITC ./ sqrt(trials * Tf.ITCcumul);
case 'phasecoher2', Tf.ITC = Tf.ITC ./ Tf.ITCcumul;
case 'phasecoher', Tf.ITC = Tf.ITC / trials; % complex coher.
end % ~any(isnan())
if Tf.saveall
Tf.ITC = transpose(Tf.ITC); % do not use ' otherwise conjugate
%imagesc(abs(Tf.ITC)); colorbar; figure;
%squeeze(Tf.tmpall(1,1,1:Tf.nb_points))
%squeeze(Tf.ITC (1,1,1:Tf.nb_points))
%Tf.ITC = shiftdim(Tf.ITC, -1);
Tf.ITC = repmat(shiftdim(Tf.ITC, -1), [trials 1 1]);
Tf.tmpall = (Tf.tmpall - abs(Tf.tmpall) .* Tf.ITC) ./ abs(Tf.tmpall);
% for index = 1:trials
% imagesc(squeeze(abs(Tf.tmpall(index,:,:)))); drawnow; figure;
% Tf.tmpall(index,:,:) = (Tf.tmpall(index,:,:) - Tf.tmpall(index,:,:) .* Tf.ITC)./Tf.tmpall(index,:,:);
% imagesc(squeeze(abs(Tf.tmpall(index,:,:)))); drawnow;
% subplot(10,10, index); imagesc(squeeze(abs(Tf.tmpall(index,:,:)))); caxis([0 1]); drawnow;
% end
% squeeze(Tf.tmpall(1,1,1:Tf.nb_points))
% figure; axcopy;
end
Tf.ITCdone = 1;
return;
% function for time freq decomposition
% ------------------------------------
function [Tf, tmpX] = tfcomp(Tf, trials, times);
% tf is an structure containing all the information about the decomposition
for trial = trials
for index = times
if ~Tf.tmpallbool(trial, index) % already computed
tmpX = Tf.X([1:Tf.winsize]+floor((index-1)*Tf.stp)+(trial-1)*Tf.frame);
if ~any(isnan(tmpX)) % perform the decomposition
tmpX = tmpX - mean(tmpX);
switch Tf.detret, case 'on',
tmpX = detrend(tmpX);
end
if Tf.cycles == 0 % use FFTs
tmpX = Tf.win .* tmpX(:);
tmpX = fft(tmpX,Tf.padratio*Tf.winsize);
tmpX = tmpX(2:Tf.padratio*Tf.winsize/2+1);
else
tmpX = transpose(Tf.win) * tmpX(:);
end
else
tmpX = NaN;
end
if Tf.ITCdone
tmpX = (tmpX - abs(tmpX) .* Tf.ITC(:,index)) ./ abs(tmpX);
end
Tf.tmpalltimes(:,index) = tmpX;
if Tf.saveall
Tf.tmpall(trial, index,:) = tmpX;
Tf.tmpallbool(trial, index) = 1;
end
else
Tf.tmpalltimes(:,index) = Tf.tmpall(trial, index,:);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COHERENCE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function for coherence initialisation
% -------------------------------------
function Coher = coherinit(nb_points, trials, timesout, type);
Coher.R = zeros(nb_points,timesout); % mean coherence
% Coher.RR = repmat(nan,nb_points,timesout); % initialize with nans
Coher.type = type;
Coher.Rn=zeros(trials,timesout);
switch type
case 'coher',
Coher.cumulX = zeros(nb_points,timesout);
Coher.cumulY = zeros(nb_points,timesout);
case 'phasecoher2',
Coher.cumul = zeros(nb_points,timesout);
end
% function for coherence calculation
% -------------------------------------
% function Coher = cohercomparray(Coher, tmpX, tmpY, trial);
% switch Coher.type
% case 'coher',
% Coher.R = Coher.R + tmpX.*conj(tmpY); % complex coher.
% Coher.cumulXY = Coher.cumulXY + abs(tmpX).*abs(tmpY);
% case 'phasecoher',
% Coher.R = Coher.R + tmpX.*conj(tmpY) ./ (abs(tmpX).*abs(tmpY)); % complex coher.
% Coher.Rn(trial,:) = 1;
% end % ~any(ISNAN)
function [Coher,tmptrialcoh] = cohercomp(Coher, tmpX, tmpY, trial, time);
tmptrialcoh = tmpX.*conj(tmpY);
switch Coher.type
case 'coher',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh; % complex coher.
Coher.cumulX(:,time) = Coher.cumulX(:,time) + abs(tmpX).^2;
Coher.cumulY(:,time) = Coher.cumulY(:,time) + abs(tmpY).^2;
case 'phasecoher2',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh; % complex coher.
Coher.cumul(:,time) = Coher.cumul(:,time) + abs(tmptrialcoh);
case 'phasecoher',
Coher.R(:,time) = Coher.R(:,time) + tmptrialcoh ./ abs(tmptrialcoh); % complex coher.
%figure; imagesc(abs(tmpX.*conj(tmpY) ./ (abs(tmpX).*abs(tmpY))));
Coher.Rn(trial,time) = Coher.Rn(trial,time)+1;
end % ~any(isnan())
% function for post coherence calculation
% ---------------------------------------
function Coher = cohercomppost(Coher, trials);
switch Coher.type
case 'coher',
Coher.R = Coher.R ./ sqrt(Coher.cumulX) ./ sqrt(Coher.cumulY);
case 'phasecoher2',
Coher.R = Coher.R ./ Coher.cumul;
case 'phasecoher',
Coher.Rn = sum(Coher.Rn, 1);
Coher.R = Coher.R ./ (ones(size(Coher.R,1),1)*Coher.Rn); % coherence magnitude
end
% function for 2 conditions coherence calculation
% -----------------------------------------------
function [coherimage, coherimage1, coherimage2] = coher2conddiff( allsavedcoher, alltrials, cond1trials, type, tfx, tfy);
t1s = alltrials(1:cond1trials);
t2s = alltrials(cond1trials+1:end);
switch type
case 'coher',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) ./ sqrt(sum(tfx(:,:,t1s),3)) ./ sqrt(sum(tfy(:,:,t1s),3));
coherimage2 = sum(allsavedcoher(:,:,t2s),3) ./ sqrt(sum(tfx(:,:,t2s),3)) ./ sqrt(sum(tfy(:,:,t1s),3));
case 'phasecoher2',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) ./ sum(abs(allsavedcoher(:,:,t1s)),3);
coherimage2 = sum(allsavedcoher(:,:,t2s),3) ./ sum(abs(allsavedcoher(:,:,t2s)),3);
case 'phasecoher',
coherimage1 = sum(allsavedcoher(:,:,t1s),3) / cond1trials;
coherimage2 = sum(allsavedcoher(:,:,t2s),3) / (size(allsavedcoher,3)-cond1trials);
end
coherimage = coherimage2 - coherimage1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BOOTSTRAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function for bootstrap initialisation
% -------------------------------------
function Boot = bootinit(Coherboot, nb_points, timesout, naccu, baselength, baseboot, boottype, alpha, rboot);
Boot.Rboot = zeros(nb_points,naccu); % summed bootstrap coher
Boot.boottype = boottype;
Boot.baselength = baselength;
Boot.baseboot = baseboot;
Boot.Coherboot = Coherboot;
Boot.naccu = naccu;
Boot.alpha = alpha;
Boot.rboot = rboot;
% function for bootstrap computation
% ----------------------------------
function Boot = bootcomp(Boot, Rn, tmpalltimesx, tmpalltimesy);
if ~isnan(Boot.alpha) && isnan(Boot.rboot)
if strcmp(Boot.boottype, 'times') % get g.naccu bootstrap estimates for each trial
goodbasewins = find(Rn==1);
if Boot.baseboot % use baseline windows only
goodbasewins = find(goodbasewins<=Boot.baselength);
end
ngdbasewins = length(goodbasewins);
j=1;
tmpsX = zeros(size(tmpalltimesx,1), Boot.naccu);
tmpsY = zeros(size(tmpalltimesx,1), Boot.naccu);
if ngdbasewins > 1
while j<=Boot.naccu
s = ceil(rand([1 2])*ngdbasewins); % random ints [1,g.timesout]
s = goodbasewins(s);
if ~any(isnan(tmpalltimesx(:,s(1)))) & ~any(isnan(tmpalltimesy(:,s(2))))
tmpsX(:,j) = tmpalltimesx(:,s(1));
tmpsY(:,j) = tmpalltimesy(:,s(2));
j = j+1;
end
end
Boot.Coherboot = cohercomp(Boot.Coherboot, tmpsX, tmpsY, 1, 1:Boot.naccu);
end
end
end
% handle other trial bootstrap types
% ----------------------------------
function [Boot, Rbootout] = bootcomppost(Boot, allRn, alltmpsX, alltmpsY);
trials = size(alltmpsX, 1);
times = size(alltmpsX, 2);
nb_points = size(alltmpsX, 3);
if ~isnan(Boot.alpha) && isnan(Boot.rboot)
if strcmp(Boot.boottype, 'trials') % get g.naccu bootstrap estimates for each trial
fprintf('\nProcessing trial bootstrap (of %d):',times(end));
tmpsX = zeros(size(alltmpsX,3), Boot.naccu);
tmpsY = zeros(size(alltmpsY,3), Boot.naccu );
Boot.fullcoherboot = zeros(nb_points, Boot.naccu, times);
for index=1:times
if rem(index,10) == 0, fprintf(' %d',index); end
if rem(index,120) == 0, fprintf('\n'); end
for allt=1:trials
j=1;
while j<=Boot.naccu
t = ceil(rand([1 2])*trials); % random ints [1,g.timesout]
if (allRn(t(1),index) == 1) && (allRn(t(2),index) == 1)
tmpsX(:,j) = squeeze(alltmpsX(t(1),index,:));
tmpsY(:,j) = squeeze(alltmpsY(t(2),index,:));
j = j+1;
end
end
Boot.Coherboot = cohercomp(Boot.Coherboot, tmpsX, tmpsY, 1, 1:Boot.naccu);
end
Boot.Coherboot = cohercomppost(Boot.Coherboot); % CHECK IF NECESSARY FOR ALL BOOT TYPE
Boot.fullcoherboot(:,:,index) = Boot.Coherboot.R;
Boot.Coherboot = coherinit(nb_points, trials, Boot.naccu, Boot.Coherboot.type);
end
Boot.Coherboot.R = Boot.fullcoherboot;
Boot = rmfield(Boot, 'fullcoherboot');
elseif strcmp(Boot.boottype, 'timestrials') % handle timestrials bootstrap
fprintf('\nProcessing time and trial bootstrap (of %d):',trials);
tmpsX = zeros(size(alltmpsX,3), Boot.naccu);
tmpsY = zeros(size(alltmpsY,3), Boot.naccu );
for allt=1:trials
if rem(allt,10) == 0, fprintf(' %d',allt); end
if rem(allt,120) == 0, fprintf('\n'); end
j=1;
while j<=Boot.naccu
t = ceil(rand([1 2])*trials); % random ints [1,g.timesout]
goodbasewins = find((allRn(t(1),:) & allRn(t(2),:)) ==1);
if Boot.baseboot % use baseline windows only
goodbasewins = find(goodbasewins<=baselength);
end
ngdbasewins = length(goodbasewins);
if ngdbasewins>1
s = ceil(rand([1 2])*ngdbasewins); % random ints [1,g.timesout]
s=goodbasewins(s);
if all(allRn(t(1),s(1)) == 1) && all(allRn(t(2),s(2)) == 1)
tmpsX(:,j) = squeeze(alltmpsX(t(1),s(1),:));
tmpsY(:,j) = squeeze(alltmpsY(t(2),s(2),:));
j = j+1;
end
end
end
Boot.Coherboot = cohercomp(Boot.Coherboot, tmpsX, tmpsY, 1, 1:Boot.naccu);
end
Boot.Coherboot = cohercomppost(Boot.Coherboot);
elseif strcmp(Boot.boottype, 'times') % boottype is 'times'
Boot.Coherboot = cohercomppost(Boot.Coherboot);
end
end
% test if precomputed
if ~isnan(Boot.alpha) && isnan(Boot.rboot) % if bootstrap analysis included . . .
% 'boottype'='times' or 'timestrials', size(R)=nb_points*naccu
% 'boottype'='trials', size(R)=nb_points*naccu*times
Boot.Coherboot.R = abs (Boot.Coherboot.R);
Boot.Coherboot.R = sort(Boot.Coherboot.R,2);
% compute bootstrap significance level
i = round(Boot.naccu*Boot.alpha);
Boot.Rsignif = mean(Boot.Coherboot.R(:,Boot.naccu-i+1:Boot.naccu),2); % significance levels for Rraw
Boot.Coherboot.R = squeeze(mean(Boot.Coherboot.R(:,Boot.naccu-i+1:Boot.naccu),2));
if size(Boot.Coherboot.R, 2) == 1
Rbootout(:,2) = Boot.Coherboot.R;
else
Rbootout(:,:,2) = Boot.Coherboot.R;
end
% BEFORE
%Rboot = [mean(Rboot(1:i,:)) ; mean(Rboot(g.naccu-i+1:g.naccu,:))];
elseif ~isnan(Boot.rboot)
Boot.Coherboot.R = Boot.rboot;
Boot.Rsignif = Boot.rboot;
Rbootout = Boot.rboot;
else
Boot.Coherboot.R = [];
Boot.Rsignif = [];
Rbootout = [];
end % NOTE: above, mean ?????
function w = hanning(n)
if ~rem(n,2)
w = .5*(1 - cos(2*pi*(1:n/2)'/(n+1)));
w = [w; w(end:-1:1)];
else
w = .5*(1 - cos(2*pi*(1:(n+1)/2)'/(n+1)));
w = [w; w(end-1:-1:1)];
end