[422372]: / functions / timefreqfunc / bootstat.m

Download this file

509 lines (475 with data), 21.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
% BOOTSTAT - accumulate surrogate data to assess significance by permutation of some
% measure of two input variables.
%
% If 'distfit','on', fits the psd with a 4th-order polynomial using the
% data kurtosis, as in Ramberg, J.S., Tadikamalla, P.R., Dudewicz E.J.,
% Mykkytka, E.F. "A probability distribution and its uses in fitting data."
% Technometrics, 21:201-214, 1979.
% Usage:
% >> [rsignif,rboot] = bootstat( { arg1 arg2 ...}, formula, varargin ...);
% Inputs:
% arg1 - [array] 1-D, 2-D or 3-D array of values
% arg2 - [array] 1-D, 2-D or 3-D array of values
% formula - [string] formula to compute the given measure. Takes arguments
% 'arg1', 'arg2' as inputs and 'res' (result, by default) as output.
% For data arrays of more than 1 dimension, the formula must be iterative
% so that shuffling can occur at each step while scanning the last
% array dimension. Examples:
% 'res = arg1 - arg2' % difference of two 1-D data arrays
% 'res = mean( arg1 .* arg2)' % mean projection of two 1-D data arrays
% 'res = res + arg1 .* conj(arg2)' % iterative, for use with 2|3-D arrays
% Optional inputs:
% 'boottype ' - ['rand'|'shuffle']
% 'rand' = do not shuffle data. Only flip polarity randomly (for real
% number) or phase (for complex numbers).
% 'shuffle' = shuffle values of first argument (see two options below).
% Default.
% 'shuffledim' - [integer] indices of dimensions to shuffle. For instance, [1 2] will
% shuffle the first two dimensions. Default is to shuffle along
% dimension 2.
% 'shufflemode' - ['swap'|'regular'] shuffle mode. Either swap dimensions (for instance
% swap rows then columns if dimension [1 2] are selected) or shuffle
% in each dimension independently (slower). If only one dimension is
% selected for shuffling, this option does not change the result.
% 'randmode' - ['opposite'|'inverse'] randomize sign (or phase for complex number,
% or randomly set half the value to reference.
% 'alpha' - [real] significance level (between 0 and 1) {default 0.05}.
% 'naccu' - [integer] number of exemplars to accumulate {default 200}.
% 'bootside' - ['both'|'upper'] side of the surrogate distribution to
% consider for significance. This parameter affects the size
% of the last dimension of the accumulation array ('accres')
% (size is 2 for 'both' and 1 for 'upper') {default: 'both'}.
% 'basevect' - [integer vector] time vector indices for baseline in second dimension.
% {default: all time points}.
% 'rboot' - accumulation array (from a previous call). Allows faster
% computation of the 'rsignif' output {default: none}.
% 'formulaout' - [string] name of the computed variable {default: 'res'}.
% 'dimaccu' - [integer] use dimension in result to accumulate data.
% For instance if the result array is size [60x50] and this value is 2,
% the function will consider than 50 times 60 value have been accumulated.
%
% Fitting distribution:
% 'distfit' - ['on'|'off'] fit distribution with known function to compute more accurate
% limits or exact p-value (see 'vals' option). The MATLAB statistical toolbox
% is required. This option is currently implemented only for 1-D data.
% 'vals' - [float array] significance values. 'alpha' is ignored and
% rsignif returns the p-values. Requires 'distfit' (see above).
% This option currently implemented only for 1-D data.
% 'correctp' - [phat pci zerofreq] parameters for correcting for a biased probability
% distribution (requires 'distfit' above). See help of CORRECTFIT.
% Outputs:
% rsignif - significance arrays. 2 values (low high) for each point (use
% 'alpha' to change these limits).
% rboot - accumulated surrogate data values.
%
% Authors: Arnaud Delorme, Bhaktivedcanta Institute, Mumbai, India, Nov 2004
%
% See also: TIMEF
% NOTE: There is an undocumented parameter, 'savecoher', [0|1]
% HELP TEXT REMOVED: (Ex: Using option 'both', coherence during baseline would be
% ignored since times are shuffled during each accumulation.
% Copyright (C) 9/2002 Arnaud Delorme & Scott Makeig, SCCN/INC/UCSD
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% *************************************
% To fit the psd with as 4th order polynomial using the distribution kurtosis,
% Reference: Ramberg, J.S., Tadikamalla, P.R., Dudewicz E.J., Mykkytka, E.F.
% "A probability distribution and its uses in fitting data."
% Technimetrics, 1979, 21: 201-214.
% *************************************
function [accarrayout, Rbootout, Rbootout2] = bootstat(oriargs, formula, varargin)
% nb_points, timesout, naccu, baselength, baseboot, boottype, alpha, rboot);
if nargin < 2
help bootstat;
return;
end
if ~ischar(formula)
error('The second argument must be a string formula');
end
g = finputcheck(varargin, ...
{ 'dims' 'integer' [] []; ...
'naccu' 'integer' [0 10000] 200; ...
'bootside' 'string' { 'both','upper' } 'both'; ...
'basevect' 'integer' [] []; ...
'boottype' 'string' { 'rand','shuffle' } 'shuffle'; ...
'shufflemode' 'string' { 'swap','regular' } 'swap'; ...
'randmode' 'string' { 'opposite','inverse' } 'opposite'; ...
'shuffledim' 'integer' [0 Inf] []; ...
'label' 'string' [] formula; ...
'alpha' 'real' [0 1] 0.05; ...
'vals' 'real' [] []; ...
'distfit' 'string' {'on','off' } 'off'; ...
'dimaccu' 'integer' [1 Inf] []; ...
'correctp' 'real' [] []; ...
'rboot' 'real' [] NaN });
if ischar(g)
error(g);
end
if isempty(g.shuffledim) && strcmpi(g.boottype, 'rand')
g.shuffledim = [];
elseif isempty(g.shuffledim)
g.shuffledim = 2;
end;
unitname = '';
if 2/g.alpha > g.naccu
if strcmpi(g.distfit, 'off') || ~((size(oriarg1,1) == 1 || size(oriarg1,2) == 1) && size(oriarg1,3) == 1)
g.naccu = 2/g.alpha;
fprintf('Adjusting naccu to compute alpha value');
end
end
if isempty(g.rboot)
g.rboot = NaN;
end
% function for bootstrap computation
% ----------------------------------
if ~iscell(oriargs) || length(oriargs) == 1,
oriarg1 = oriargs;
oriarg2 = [];
else
oriarg1 = oriargs{1};
oriarg2 = oriargs{2};
end
[nb_points times trials] = size(oriarg1);
if times == 1, disp('Warning 1 value only for shuffling dimension'); end
% only consider baseline
% ----------------------
if ~isempty(g.basevect)
fprintf('\nPermutation statistics baseline length is %d (out of %d) points\n', length(g.basevect), times);
arg1 = oriarg1(:,g.basevect,:);
if ~isempty(oriarg2)
arg2 = oriarg2(:,g.basevect,:);
end
else
arg1 = oriarg1;
arg2 = oriarg2;
end
% formula for accumulation array
% ------------------------------
% if g.dimaccu is not empty, accumulate over that dimension
% of the resulting array to speed up computation
formula = [ 'res=' formula ];
g.formulapost = [ 'if index == 1, ' ...
' if ~isempty(g.dimaccu), ' ...
' Rbootout= zeros([ ceil(g.naccu/size(res,g.dimaccu)) size( res ) ]);' ...
' else,' ...
' Rbootout= zeros([ g.naccu size( res ) ]);' ...
' end;' ...
'end,' ...
'Rbootout(count,:,:,:) = res;' ...
'count = count+1;' ...
'if ~isempty(g.dimaccu), ' ...
' index = index + size(res,g.dimaccu);' ...
' fprintf(''%d '', index-1);' ...
'else ' ...
' index=index+1;' ...
' if rem(index,10) == 0, fprintf(''%d '', index); end;' ...
' if rem(index,100) == 0, fprintf(''\n''); end;' ...
'end;' ];
% **************************
% case 1: precomputed values
% **************************
if ~isnan(g.rboot)
Rbootout = g.rboot;
% ***********************************
% case 2: randomize polarity or phase
% ***********************************
elseif strcmpi(g.boottype, 'rand') && strcmpi(g.randmode, 'inverse')
fprintf('Bootstat function: randomize inverse values\n');
fprintf('Processing permutation statistics for %s (naccu=%d):', g.label, g.naccu);
% compute random array
% --------------------
multarray = ones(size(arg1));
totlen = prod(size(arg1));
if isreal(arg1),
multarray(1:round(totlen/2)) = 0;
end
for shuff = 1:ndims(multarray)
multarray = supershuffle(multarray,shuff); % initial shuffling
end
if isempty(g.shuffledim), g.shuffledim = 1:ndims(multarray); end
invarg1 = 1./arg1;
% accumulate
% ----------
index = 1;
count = 1;
while index <= g.naccu
for shuff = g.shuffledim
multarray = supershuffle(multarray,shuff);
end
tmpinds = find(reshape(multarray, 1, prod(size(multarray))));
arg1 = oriarg1;
arg1(tmpinds) = invarg1(tmpinds);
eval([ formula ';' ]);
eval( g.formulapost ); % also contains index = index+1
end
elseif strcmpi(g.boottype, 'rand') % opposite
fprintf('Bootstat function: randomize polarity or phase\n');
fprintf('Processing permutation statistics for %s (naccu=%d):', g.label, g.naccu);
% compute random array
% --------------------
multarray = ones(size(arg1));
totlen = prod(size(arg1));
if isreal(arg1),
multarray(1:round(totlen/2)) = -1;
else
tmparray = exp(j*linspace(0,2*pi,totlen+1));
multarray(1:totlen) = tmparray(1:end-1);
end
for shuff = 1:ndims(multarray)
multarray = supershuffle(multarray,shuff); % initial shuffling
end
if isempty(g.shuffledim), g.shuffledim = 1:ndims(multarray); end
% accumulate
% ----------
index = 1;
count = 1;
while index <= g.naccu
for shuff = g.shuffledim
multarray = supershuffle(multarray,shuff);
end
arg1 = arg1.*multarray;
eval([ formula ';' ]);
eval( g.formulapost ); % also contains index = index+1
end
% ********************************************
% case 3: shuffle vector of only one dimension
% ********************************************
elseif length(g.shuffledim) == 1
fprintf('Bootstat function: shuffling along dimension %d only\n', g.shuffledim);
fprintf('Processing permutation statistics for %s (naccu=%d):', g.label, g.naccu);
index = 1;
count = 1;
while index <= g.naccu
arg1 = shuffleonedim(arg1,g.shuffledim);
eval([ formula ';' ]);
eval( g.formulapost );
end
% ***********************************************
% case 5: shuffle vector along several dimensions
% ***********************************************
else
if strcmpi(g.shufflemode, 'swap') % swap mode
fprintf('Bootstat function: shuffling along dimension %s (swap mode)\n', int2str(g.shuffledim));
fprintf('Processing permutation statistics for %s (naccu=%d):', g.label, g.naccu);
index = 1;
count = 1;
while index <= g.naccu
for shuff = g.shuffledim
arg1 = supershuffle(arg1,shuff);
end
eval([ formula ';' ]);
eval( g.formulapost );
end
else % regular shuffling
fprintf('Bootstat function: shuffling along dimension %s (regular mode)\n', int2str(g.shuffledim));
fprintf('Processing permutation statistics for %s (naccu=%d):', g.label, g.naccu);
index = 1;
count = 1;
while index <= g.naccu
for shuff = g.shuffledim
arg1 = shuffleonedim(arg1,shuff);
end
eval([ formula ';' ]);
eval( g.formulapost );
end
end
end
Rbootout(count:end,:,:,:) = [];
% **********************
% assessing significance
% **********************
% get accumulation array
% ----------------------
accarray = Rbootout;
if ~isreal(accarray)
accarray = sqrt(accarray .* conj(accarray)); % faster than abs()
end
% reshape the output if necessary
% -------------------------------
if ~isempty(g.dimaccu)
if g.dimaccu+1 == 3
accarray = permute( accarray, [1 3 2]);
end
accarray = reshape( accarray, size(accarray,1)*size(accarray,2), size(accarray,3) );
end
if size(accarray,1) == 1, accarray = accarray'; end; % first dim contains g.naccu
% ******************************************************
% compute thresholds on array not fitting a distribution
% ******************************************************
if strcmpi(g.distfit, 'off')
% compute bootstrap significance level
% ------------------------------------
accarray = sort(accarray,1); % always sort on naccu
Rbootout2 = accarray;
i = round(size(accarray,1)*g.alpha);
accarray1 = squeeze(mean(accarray(size(accarray,1)-i+1:end,:,:),1));
accarray2 = squeeze(mean(accarray(1:i ,:,:),1));
if abs(accarray(1,1,1) - accarray(end,1,1)) < abs(accarray(1,1,1))*1e-15
accarray1(:) = NaN;
accarray2(:) = NaN;
end
else
% *******************
% fit to distribution
% *******************
sizerboot = size (accarray);
accarray1 = zeros(sizerboot(2:end));
accarray2 = zeros(sizerboot(2:end));
if ~isempty(g.vals{index})
if ~all(size(g.vals{index}) == sizerboot(2:end) )
error('For fitting, vals must have the same dimension as the output array (try transposing)');
end
end
% fitting with Ramberg-Schmeiser distribution
% -------------------------------------------
if ~isempty(g.vals{index}) % compute significance for value
for index1 = 1:size(accarrayout,1)
for index2 = 1:size(accarrayout,2)
accarray1(index1,index2) = 1 - rsfit(squeeze(accarray(:,index1,index2)), g.vals{index}(index1, index2));
if length(g.correctp) == 2
accarray1(index1,index2) = correctfit(accarray1, 'gamparams', [g.correctp 0]); % no correction for p=0
else
accarray1(index1,index2) = correctfit(accarray1, 'gamparams', g.correctp);
end
end
end
else % compute value for significance
for index1 = 1:size(accarrayout,1)
for index2 = 1:size(accarrayout,2)
[p c l chi2] = rsfit(Rbootout(:),0);
pval = g.alpha; accarray1(index1,index2) = l(1) + (pval.^l(3) - (1-pval).^l(4))/l(2);
pval = 1-g.alpha; accarray2(index1,index2) = l(1) + (pval.^l(3) - (1-pval).^l(4))/l(2);
end
end
end
% plot results
% -------------------------------------
% figure;
% hist(abs(Rbootout)); tmpax = axis;
% hold on;
% valcomp = linspace(min(abs(Rbootout(:))), max(abs(Rbootout(:))), 100);
% normy = normpdf(valcomp, mu, sigma);
% plot(valcomp, normy/max(normy)*tmpax(4), 'r');
% return;
end
% set output array: backward compatible
% -------------------------------------
if strcmpi(g.bootside, 'upper'); % only upper significance
accarrayout = accarray1;
else
if size(accarray1,1) ~= 1 && size(accarray1,2) ~= 1
accarrayout = accarray2;
accarrayout(:,:,2) = accarray1;
else
accarrayout = [ accarray2(:) accarray1(:) ];
end
end
accarrayout = squeeze(accarrayout);
if size(accarrayout,1) == 1 && size(accarrayout,3) == 1, accarrayout = accarrayout'; end
% better but not backward compatible
% ----------------------------------
% accarrayout = { accarray1 accarray2 };
return;
% fitting with normal distribution (deprecated)
% --------------------------------
[mu sigma] = normfit(abs(Rbootout(:)));
accarrayout = 1 - normcdf(g.vals, mu, sigma); % cumulative density distribution
% formula of normal distribution
% y = 1/sqrt(2) * exp( -(x-mu).^2/(sigma*sigma*2) ) / (sqrt(pi)*sigma);
% % Gamma and Beta fits:
% elseif strcmpi(g.distfit, 'gamma')
% [phatgam pcigam] = gamfit(abs(Rbootout(:)));
% gamy = gampdf(valcomp, phatgam(1), pcigam(2))
% p = 1 - gamcdf(g.vals, phatgam(1), pcigam(2)); % cumulative density distribution
% elseif strcmpi(g.distfit, 'beta')
% [phatbeta pcibeta] = betafit(abs(Rbootout(:)));
% betay = betapdf(valcomp, phatbeta(1), pcibeta(1));
% p = 1 - betacdf(g.vals, phatbeta(1), pcibeta(1)); % cumulative density distribution
% end
if strcmpi(g.distfit, 'off')
tmpsort = sort(Rbootout);
i = round(g.alpha*g.naccu);
sigval = [mean(tmpsort(1:i)) mean(tmpsort(g.naccu-i+1:g.naccu))];
if strcmpi(g.bootside, 'upper'), sigval = sigval(2); end
accarrayout = sigval;
end
% this shuffling preserve the number of -1 and 1
% for columns and rows (assuming matrix size is multiple of 2
% -----------------------------------------------------------
function array = supershuffle(array, dim)
if size(array, 1) == 1 || size(array,2) == 1
array = shuffle(array);
return;
end
if size(array, dim) == 1, return; end
if dim == 1
indrows = shuffle(1:size(array,1));
for index = 1:2:length(indrows)-rem(length(indrows),2) % shuffle rows
tmparray = array(indrows(index),:,:);
array(indrows(index),:,:) = array(indrows(index+1),:,:);
array(indrows(index+1),:,:) = tmparray;
end
elseif dim == 2
indcols = shuffle(1:size(array,2));
for index = 1:2:length(indcols)-rem(length(indcols),2) % shuffle columns
tmparray = array(:,indcols(index),:);
array(:,indcols(index),:) = array(:,indcols(index+1),:);
array(:,indcols(index+1),:) = tmparray;
end
else
ind3d = shuffle(1:size(array,3));
for index = 1:2:length(ind3d)-rem(length(ind3d),2) % shuffle columns
tmparray = array(:,:,ind3d(index));
array(:,:,ind3d(index)) = array(:,:,ind3d(index+1));
array(:,:,ind3d(index+1)) = tmparray;
end
end
% shuffle one dimension, one row/columns at a time
% -----------------------------------------------
function array = shuffleonedim(array, dim)
if size(array, 1) == 1 || size(array,2) == 1
array = shuffle(array, dim);
else
if dim == 1
for index1 = 1:size(array,3)
for index2 = 1:size(array,2)
array(:,index2,index1) = shuffle(array(:,index2,index1));
end
end
elseif dim == 2
for index1 = 1:size(array,3)
for index2 = 1:size(array,1)
array(index2,:,index1) = shuffle(array(index2,:,index1));
end
end
else
for index1 = 1:size(array,1)
for index2 = 1:size(array,2)
array(index1,index2,:) = shuffle(array(index1,index2,:));
end
end
end
end