[422372]: / functions / studyfunc / std_selcomp.m

Download this file

116 lines (107 with data), 4.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
% STD_SELCOMP - Helper function for STD_ERPPLOT, STD_SPECPLOT
% and STD_ERSPPLOT to select specific
% components prior to plotting.
% Usage:
% >> std_selcomp( STUDY, data, cluster, setinds, compinds, comps)
%
% Inputs:
% STUDY - EEGLAB STUDY structure.
% data - [cell array] mean data for each subject group and/or data
% condition. For example, to compute mean ERPs statistics from a
% STUDY for epochs of 800 frames in two conditions from three
% groups of 12 subjects,
% >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1
% [800x12] [800x12] [800x12] }; % 3 groups, cond 2
% cluster - [integer] cluster index
% setinds - [cell array] set indices for each of the last dimension of the
% data cell array.
% >> setinds = { [12] [12] [12];... % 3 groups, cond 1
% [12] [12] [12] }; % 3 groups, cond 2
% compinds - [cell array] component indices for each of the last dimension
% of the data cell array.
% >> compinds = { [12] [12] [12];... % 3 groups, cond 1
% [12] [12] [12] }; % 3 groups, cond 2
% comps - [integer] find and select specific component index in array
%
% Output:
% data - [cell array] data array with the subject or component selected
% subject - [string] subject name (for component selection)
% comp_names - [cell array] component names (for component selection)
%
% Author: Arnaud Delorme, CERCO, CNRS, 2006-
%
% See also: STD_ERPPLOT, STD_SPECPLOT and STD_ERSPPLOT
% Copyright (C) 2006 Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [data, subject, comp_names] = std_selcomp(STUDY, data, clust, setinds, compinds, compsel)
if nargin < 2
help std_selcomp;
return;
end
optndims = ndims(data{1});
comp_names = {};
subject = '';
% find and select group
% ---------------------
if isempty(compsel), return; end
sets = STUDY.cluster(clust).sets(:,compsel);
comps = STUDY.cluster(clust).comps(compsel);
%grp = STUDY.datasetinfo(sets(1)).group;
%grpind = strmatch( grp, STUDY.group );
%if isempty(grpind), grpind = 1; end
%data = data(:,grpind);
% find component
% --------------
for c = 1:length(data(:))
rminds = 1:size(data{c},optndims);
for ind = length(compinds{c}):-1:1
setindex = STUDY.design(STUDY.currentdesign).cell(setinds{c}(ind)).dataset;
if compinds{c}(ind) == comps && any(setindex == sets)
rminds(ind) = [];
end
end
if optndims == 2
data{c}(:,rminds) = []; %2-D
elseif optndims == 3
data{c}(:,:,rminds) = []; %3-D
else
data{c}(:,:,:,rminds) = []; %3-D
end
comp_names{c,1} = comps;
end
% for c = 1:size(data,1)
% for ind = 1:length(compinds{1,grpind})
% if compinds{1,grpind}(ind) == comps && any(setinds{1,grpind}(ind) == sets)
% if optndims == 2
% data{c} = data{c}(:,ind);
% else data{c} = data{c}(:,:,ind);
% end
% comp_names{c,1} = comps;
% end
% end
% end
subject = STUDY.datasetinfo(sets(1)).subject;