[422372]: / functions / studyfunc / std_readpac.m

Download this file

220 lines (194 with data), 10.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
% STD_READPAC - read phase-amplitude correlation
%
% Usage:
% >> [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG);
% >> [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG, ...
% 'key', 'val');
% Inputs:
% STUDY - studyset structure containing some or all files in ALLEEG
% ALLEEG - vector of loaded EEG datasets
%
% Optional inputs:
% 'channels' - [cell] list of channels to import {default: all}
% 'clusters' - [integer] list of clusters to import {[]|default: all but
% the parent cluster (1) and any 'NotClust' clusters}
% 'freqrange' - [min max] frequency range {default: whole measure range}
% 'timerange' - [min max] time range {default: whole measure epoch}
%
% Output:
% STUDY - (possibly) updated STUDY structure
% clustinfo - structure of specified cluster information.
%
% Author: Arnaud Delorme, CERCO, 2009-
% Copyright (C) Arnaud Delorme, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG, varargin);
if nargin < 2
help std_readpac;
return;
end
[opt moreopts] = finputcheck( varargin, { ...
'condition' 'cell' [] {};
'channels1' 'cell' [] {};
'clusters1' 'integer' [] [];
'channels2' 'cell' [] {};
'clusters2' 'integer' [] [];
'onepersubj' 'string' { 'on','off' } 'off';
'forceread' 'string' { 'on','off' } 'off';
'recompute' 'string' { 'on','off' } 'off';
'freqrange' 'real' [] [];
'timerange' 'real' [] [] }, ...
'std_readpac', 'ignore');
if ischar(opt), error(opt); end
%STUDY = pop_pacparams(STUDY, 'default');
%if isempty(opt.timerange), opt.timerange = STUDY.etc.pacparams.timerange; end
%if isempty(opt.freqrange), opt.freqrange = STUDY.etc.pacparams.freqrange; end
nc = max(length(STUDY.condition),1);
ng = max(length(STUDY.group),1);
% find channel indices
% --------------------
if ~isempty(opt.channels1)
len1 = length(opt.channels1);
len2 = length(opt.channels2);
opt.indices1 = std_chaninds(STUDY, opt.channels1);
opt.indices2 = std_chaninds(STUDY, opt.channels2);
else
len1 = length(opt.clusters1);
len2 = length(opt.clusters2);
opt.indices1 = opt.clusters1;
opt.indices2 = opt.clusters2;
end
STUDY = std_convertoldsetformat(STUDY); %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX REMOVE WHEN READY TO GET RID OF OLD FORMAT
for ind1 = 1:len1 % usually only one channel/component
for ind2 = 1:len2 % usually one channel/component
% find indices
% ------------
if ~isempty(opt.channels1)
tmpstruct1 = STUDY.changrp(opt.indices1(ind1));
tmpstruct2 = STUDY.changrp(opt.indices2(ind2));
else
tmpstruct1 = STUDY.cluster(opt.indices1(ind1));
tmpstruct2 = STUDY.cluster(opt.indices2(ind2));
end
allinds1 = tmpstruct1.allinds;
setinds1 = tmpstruct1.setinds;
allinds2 = tmpstruct2.allinds;
setinds2 = tmpstruct2.setinds;
% check if data is already here
% -----------------------------
dataread = 0;
if isfield(tmpstruct1, 'pacdata') && strcmpi(opt.forceread, 'off') && strcmpi(opt.recompute, 'off')
if ~isempty(tmpstruct1.pacdata) && iscell(tmpstruct1.pacdata) && length(tmpstruct1.pacdata) >= opt.indices2(ind2)
if ~isempty(tmpstruct1.pacdata{opt.indices2(ind2)})
%if isequal( STUDY.etc.pacparams.timerange, opt.timerange) && ...
% isequal( STUDY.etc.pacparams.freqrange, opt.freqrange) && ~isempty(tmpstruct.pacdata)
dataread = 1;
end
end
end
if ~dataread
% reserve arrays
% --------------
% pacarray = cell( max(length(STUDY.condition),1), max(length(STUDY.group),1) );
% tmpind1 = 1; while(isempty(setinds{tmpind1})), tmpind1 = tmpind1+1; end
% tmpind2 = 1; while(isempty(setinds{tmpind2})), tmpind2 = tmpind2+1; end
% if ~isempty(opt.channels1)
% [ tmp allfreqs alltimes ] = std_readpac( ALLEEG, 'channels1' , setinds1{tmpind}(1), 'channels2' , setinds2{tmpind}(1), 'timerange', opt.timerange, 'freqrange', opt.freqrange);
% else [ tmp allfreqs alltimes ] = std_readpac( ALLEEG, 'components1', setinds1{tmpind}(1), 'components2', setinds2{tmpind}(1), 'timerange', opt.timerange, 'freqrange', opt.freqrange);
% end
% for c = 1:nc
% for g = 1:ng
% pacarray{c, g} = repmat(zero, [length(alltimes), length(allfreqs), length(allinds1{c,g}) ]);
% end
% end
% read the data and select channels
% ---------------------------------
fprintf('Reading all PAC data...\n');
for c = 1:nc
for g = 1:ng
% scan all subjects
count = 1;
for subj = 1:length(STUDY.subject)
% get dataset indices for this subject
[inds1 inds2] = getsubjcomps(STUDY, subj, setinds1{c,g}, setinds2{c,g});
if setinds1{c,g}(inds1) ~= setinds2{c,g}(inds2), error('Wrong subject index'); end
if ~strcmpi(ALLEEG(setinds1{c,g}(inds1)).subject, STUDY.subject(subj)), error('Wrong subject index'); end
if ~isempty(inds1) && ~isempty(inds2)
if ~isempty(opt.channels1)
[pacarraytmp allfreqs alltimes] = std_pac( ALLEEG(setinds1{c,g}(subj)), 'channels1' , allinds1{c,g}(inds1), 'channels2', allinds2{c,g}(inds2), 'timerange', opt.timerange, 'freqrange', opt.freqrange, 'recompute', opt.recompute, moreopts{:});
else [pacarraytmp allfreqs alltimes] = std_pac( ALLEEG(setinds1{c,g}(subj)), 'components1', allinds1{c,g}(inds1), 'components2', allinds2{c,g}(inds2), 'timerange', opt.timerange, 'freqrange', opt.freqrange, 'recompute', opt.recompute, moreopts{:});
end
% collapse first 2 dimensions (comps x comps)
if ndims(pacarraytmp) == 4
pacarraytmp = reshape(pacarraytmp, size(pacarraytmp,1)*size(pacarraytmp,2), size(pacarraytmp,3), size(pacarraytmp,4));
else pacarraytmp = reshape(pacarraytmp, 1, size(pacarraytmp,1),size(pacarraytmp,2));
end
if strcmpi(opt.onepersubj, 'on')
pacarray{c, g}(:,:,count) = squeeze(mean(pacarraytmp,1));
count = count+1;
else
for tmpi = 1:size(pacarraytmp,1)
pacarray{c, g}(:,:,count) = pacarraytmp(tmpi,:,:);
count = count+1;
end
end
end
end
end
end
% copy data to structure
% ----------------------
if ~isempty(opt.channels1)
STUDY.changrp(opt.indices1(ind1)).pacfreqs = allfreqs;
STUDY.changrp(opt.indices1(ind1)).pactimes = alltimes;
STUDY.changrp(opt.indices1(ind1)).pacdata{opt.indices2(ind2)} = pacarray;
else STUDY.cluster(opt.indices1(ind1)).pacfreqs = allfreqs;
STUDY.cluster(opt.indices1(ind1)).pactimes = alltimes;
STUDY.cluster(opt.indices1(ind1)).pacdata{opt.indices2(ind2)} = pacarray;
end
end
end
end
% return structure
% ----------------
if ~isempty(opt.channels1)
clustinfo = STUDY.changrp(opt.indices1);
else clustinfo = STUDY.cluster(opt.indices1);
end
% get components common to a given subject
% ----------------------------------------
function [inds1 inds2] = getsubjcomps(STUDY, subj, setlist1, setlist2, complist1, complist2)
inds1 = [];
inds2 = [];
datasets = strmatch(STUDY.subject{subj}, { STUDY.datasetinfo.subject } ); % all datasets of subject
[tmp1] = intersect_bc(setlist1, datasets);
[tmp2] = intersect_bc(setlist2, datasets);
if length(tmp1) > 1, error('This function does not support sessions for subjects'); end
if length(tmp2) > 1, error('This function does not support sessions for subjects'); end
if tmp1 ~= tmp2, error('Different datasets while it should be the same'); end
if ~isempty(tmp1), inds1 = find(setlist1 == tmp1); end
if ~isempty(tmp2), inds2 = find(setlist2 == tmp2); end