[422372]: / functions / studyfunc / std_limo.m

Download this file

736 lines (675 with data), 32.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
% STD_LIMO - Export and run in LIMO the EEGLAB STUDY design.
% call limo_batch to create all 1st level LIMO_EEG analysis
%
% Usage:
% [STUDY LIMO_files] = std_limo(STUDY,ALLEEG,'key',val)
%
% Inputs:
% STUDY - studyset structure containing some or all files in ALLEEG
% ALLEEG - vector of loaded EEG datasets
%
% Optional inputs:
% 'measure' - ['daterp'|'icaerp'|'datspec'|'icaspec'|'datersp'|'icaersp']
% measure to compute. Currently, only 'daterp' and
% 'datspec' are supported. Default is 'daterp'.
% 'method' - ['OLS'|'WTS'|'IRLS'] Ordinary Least Squares (OLS) or Weighted
% Least Squares (WTS) or Iterative Reweighted Least Squares'IRLS'.
% WTS should be used as it is more robust. IRLS is much slower
% and better across subjects than across trials.
% 'design' - [integer] design index to process. Default is the current
% design stored in STUDY.currentdesign.
% 'contnan' - ['on'|'off'] NaN for continuous variables. When 'on'
% NaNs are allowed (and trials removed). When NaNs are
% replaced with 0s.
% 'erase' - ['on'|'off'] erase previous files. Default is 'on'.
% 'neighboropt' - [cell] cell array of options for the function computing
% the channel neighbox matrix STD_PREPARE_CHANLOCS. The file
% is saved automatically if channel location are present.
% This option allows to overwrite the defaults when computing
% the channel neighbox matrix.
% 'chanloc' - Channel location structure. Must be used with 'neighbormat',
% or it will be ignored. If this option is used, it will
% ignore 'neighboropt' if used.
% 'neighbormat' - Neighborhood matrix of electrodes. Must be used with 'chanloc',
% or it will be ignored. If this option is used, it will
% ignore 'neighboropt' if used.
% 'freqlim' - Frequency trimming in Hz
% 'timelim' - Time trimming in millisecond
%
% Outputs:
% STUDY - modified STUDY structure (the STUDY.design now contains a list
% of the limo files)
% LIMO_files a structure with the following fields
% LIMO_files.LIMO the LIMO folder name where the study is analyzed
% LIMO_files.mat a list of 1st level LIMO.mat (with path)
% LIMO_files.Beta a list of 1st level Betas.mat (with path)
% LIMO_files.con a list of 1st level con.mat (with path)
% LIMO_files.expected_chanlocs expected channel location neighbor file for
% correcting for multiple comparisons
% Example:
% [STUDY LIMO_files] = std_limo(STUDY,ALLEEG,'measure','daterp')
%
% Author: Arnaud Delorme (SCCN) & Cyril Pernet (LIMO Team)
% Based on previous version from Ramon Martinez-Cancino and Arnaud Delorme
%
% Copyright (C) 2018 Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [STUDY, LIMO_files] = std_limo(STUDY,ALLEEG,varargin)
LIMO_files = [];
if isempty(STUDY.filepath)
STUDY.filepath = pwd;
end
cd(STUDY.filepath);
if nargin < 2
help std_limo;
return;
end
warning('off', 'MATLAB:lang:cannotClearExecutingFunction');
if ischar(varargin{1}) && ( strcmpi(varargin{1}, 'daterp') || ...
strcmpi(varargin{1}, 'datspec') || ...
strcmpi(varargin{1}, 'dattimef') || ...
strcmpi(varargin{1}, 'icaerp')|| ...
strcmpi(varargin{1}, 'icaspec')|| ...
strcmpi(varargin{1}, 'icatimef'))
opt.measure = varargin{1};
opt.design = varargin{2};
opt.ow_chanlocfile = 'no'; % if chanloc file exist, do not overwrite
opt.erase = 'on'; % erase previous folders/file with the same name
opt.method = 'WLS'; % weighted least squares by default
opt.zscore = 1; % zscore regressors
else
opt = finputcheck( varargin, ...
{ 'measure' 'string' { 'daterp' 'datspec' 'dattimef' 'icaerp' 'icaspec' 'icatimef' } 'daterp'; ...
'method' 'string' { 'OLS' 'WLS' 'IRLS' } 'WLS';
'design' 'integer' [] STUDY.currentdesign;
'erase' 'string' { 'on','off' } 'off';
'splitreg' 'string' { 'on','off' } 'off';
'interaction' 'string' { 'on','off' } 'off';
'contnan' 'string' { 'on','off' } 'off';
'freqlim' 'real' [] [] ;
'timelim' 'real' [] [] ;
'neighboropt' 'cell' {} {} ;
'chanloc' 'struct' {} struct('no', {});
'neighbormat' 'real' [] [];
'zscore' 'real' [0,1] 1 ;
'ow_chanlocfile' 'string' {'yes','no'} 'no'},...
'std_limo');
if ischar(opt), error(opt); end
end
opt.measureori = opt.measure;
if strcmpi(opt.measure, 'datersp')
opt.measure = 'dattimef';
end
Analysis = opt.measure;
design_index = opt.design;
% Make sure paths are ok for LIMO (Consider to move this to eeglab.m in a future)
% -------------------------------------------------------------------------
root = fileparts(which('limo_eeg'));
pathCell = regexp(path, pathsep, 'split');
onPath = all([sum(strcmp([root filesep 'help'],pathCell))~=0,...
sum(strcmp([root filesep 'limo_cluster_functions'],pathCell))~=0,...
sum(strcmp([root filesep 'external' filesep 'psom'],pathCell))~=0,...
sum(strcmp([root filesep 'deprecated'], pathCell))~=0]);
if onPath == 0
addpath([root filesep 'limo_cluster_functions'])
addpath([root filesep 'external'])
addpath([root filesep 'external' filesep 'psom'])
addpath([root filesep 'help'])
addpath([root filesep 'deprecated'])
end
% Checking fieldtrip paths to compute gp channel location
skip_chanlocs = 0;
chanloc_created = 0;
limoChanlocs = [];
if exist(fullfile([STUDY.filepath filesep 'derivatives'], 'limo_gp_level_chanlocs.mat'),'file')
limoChanlocs = fullfile([STUDY.filepath filesep 'derivatives'], 'limo_gp_level_chanlocs.mat');
elseif exist(fullfile(STUDY.filepath, 'limo_gp_level_chanlocs.mat'),'file')
limoChanlocs = fullfile(STUDY.filepath, 'limo_gp_level_chanlocs.mat');
elseif exist(fullfile([STUDY.filepath filesep 'derivatives'], 'limo_chanlocs.mat'),'file')
limoChanlocs = fullfile([STUDY.filepath filesep 'derivatives'], 'limo_chanlocs.mat');
elseif exist(fullfile(STUDY.filepath, 'limo_chanlocs.mat'),'file')
limoChanlocs = fullfile(STUDY.filepath, 'limo_chanlocs.mat');
end
if ~isempty(limoChanlocs)
if ~strcmpi(opt.ow_chanlocfile,'no') % empty or yes
opt.ow_chanlocfile = questdlg2('channel location file found, do you want to overwrite','overwrite?','yes','no','no');
end
if isempty(opt.ow_chanlocfile) || strcmpi(opt.ow_chanlocfile,'no')
skip_chanlocs = 1;
end
end
if skip_chanlocs == 0
if ~exist('ft_prepare_neighbours','file')
warndlg('std_limo error: Fieldtrip extension should be installed - chanlocs NOT generated', '', 'non-modal');
skip_chanlocs = 1;
else
if ~exist('eeglab2fieldtrip','file')
root = fileparts(which('ft_prepare_neighbours'));
addpath([root filesep 'external' filesep 'eeglab']);
end
end
end
% Detecting type of analysis
% -------------------------------------------------------------------------
model.defaults.datatype = opt.measureori(4:end);
if ~isempty(strfind(Analysis,'dat')) %#ok<STREMP>
model.defaults.type = 'Channels';
elseif ~isempty(strfind(Analysis,'ica')) %#ok<STREMP>
[STUDY,flags]=std_checkdatasession(STUDY,ALLEEG);
if sum(flags)>0
error('some subjects have data from different sessions - can''t do ICA');
end
model.defaults.type = 'Components';
end
% Checking if clusters
% -------------------------------------------------------------------------
if strcmp(model.defaults.type,'Components')
if isempty(STUDY.cluster(1).child)
warning('Components have not been clustered, LIMO will not match them across subjects');
model.defaults.icaclustering = 0;
else
model.defaults.icaclustering = 1;
end
end
% computing channel neighbour matrix
% ---------------------------------
if skip_chanlocs == 0
chanloc_created = 1;
if isempty(opt.chanloc) && isempty(opt.neighbormat)
if isfield(ALLEEG(1).chanlocs, 'theta') && ~strcmp(model.defaults.type,'Components')
if ~isfield(STUDY.etc,'statistic')
STUDY = pop_statparams(STUDY, 'default');
end
try
[~,~,limoChanlocs] = std_prepare_neighbors(STUDY, ALLEEG, 'force', 'on', opt.neighboropt{:});
chanlocname = 'limo_gp_level_chanlocs.mat';
catch neighbors_error
limoChanlocs = []; chanloc_created = 0;
warndlg2(neighbors_error.message,'limo_gp_level_chanlocs.mat not created', 'non-modal')
end
else
limoChanlocs = []; chanloc_created = 0;
if ~isempty(STUDY.cluster(1).child)
disp('Warning: cannot compute expected channel distance for correction for multiple comparisons');
end
end
else
limoChanlocs.expected_chanlocs = opt.chanloc;
limoChanlocs.channeighbstructmat = opt.neighbormat;
chanlocname = 'limo_chanlocs.mat';
end
end
if chanloc_created
% contains will not work in Octave
if isempty(strfind(STUDY.filepath,'derivatives'))
if ~exist([STUDY.filepath filesep 'derivatives'],'dir')
mkdir([STUDY.filepath filesep 'derivatives']);
end
limoChanlocsFile = fullfile([STUDY.filepath filesep 'derivatives'], chanlocname);
else
limoChanlocsFile = fullfile(STUDY.filepath, chanlocname);
end
% this sometimes happen to be nested in expected_chanlocs, fixing it here
if all(arrayfun(@(x) any(strcmp(x,{'expected_chanlocs','channeighbstructmat'})), fieldnames(limoChanlocs.expected_chanlocs)))
limoChanlocs = limoChanlocs.expected_chanlocs;
end
save('-mat', limoChanlocsFile, '-struct', 'limoChanlocs');
fprintf('Saving channel neighbors for correction for multiple comparisons in \n%s\n', limoChanlocsFile);
end
% 1st level analysis
% -------------------------------------------------------------------------
model.cat_files = [];
model.cont_files = [];
% Cleaning old files from the current design (Cleaning ALL)
% -------------------------------------------------------------------------
% NOTE: Clean up the .lock files to (to be implemented)
% [STUDY.filepath filesep 'derivatives' filesep 'limo_batch_report']
if strcmp(opt.erase,'on')
[~,filename] = fileparts(STUDY.filename);
std_limoerase(STUDY.filepath, filename, STUDY.subject, num2str(STUDY.currentdesign));
STUDY.limo = [];
end
% Check if the measures has been computed
% also find out if the channels are interpolated
% -------------------------------------------------------------------------
interpolated = zeros(1,length(STUDY.datasetinfo));
for iDat = 1:length(STUDY.datasetinfo)
fileName = fullfile(STUDY.datasetinfo(iDat).filepath, [ STUDY.datasetinfo(iDat).subject '*.' opt.measure ]);
% fileName should already match unless user moves / rename, hence using dir
fileName = dir(fileName);
if isempty(fileName)
error('std_limo subject %s: Measures must be computed first',STUDY.datasetinfo(iDat).subject);
else
if strcmp(model.defaults.type,'Channels')
tmpChans = load('-mat', fullfile(fileName(1).folder,fileName(1).name), 'labels');
if length(tmpChans.labels) > ALLEEG(iDat).nbchan, interpolated(iDat) = 1; end
end
end
end
measureflags = struct('daterp','off',...
'datspec','off',...
'datersp','off',...
'dattimef','off',...
'datitc' ,'off',...
'icaerp' ,'off',...
'icaspec','off',...
'icatimef','off',...
'icaersp','off',...
'icaitc','off');
measureflags.(lower(opt.measureori))= 'on';
STUDY.etc.measureflags = measureflags;
mergedChanlocs = eeg_mergelocs(ALLEEG.chanlocs);
fprintf('generating temporary files, pulling relevant trials ... \n')
% generate temporary merged datasets needed by LIMO
% -------------------------------------------------
allSubjects = { STUDY.datasetinfo.subject };
allSessions = { STUDY.datasetinfo.session };
uniqueSubjects = unique(allSubjects);
nb_subjects = length(uniqueSubjects);
allSessions(cellfun(@isempty, allSessions)) = { 1 };
allSessions = cellfun(@num2str, allSessions, 'uniformoutput', false);
uniqueSessions = unique(allSessions);
% by default we create a design matrix with all condition
factors = pop_listfactors(STUDY.design(opt.design), 'gui', 'off', 'level', 'one', 'constant', 'off');
for iSubj = 1:nb_subjects
for iSess = 1:length(uniqueSessions)
inds1 = strmatch( uniqueSubjects{iSubj}, allSubjects, 'exact');
inds2 = strmatch( uniqueSessions{iSess}, allSessions, 'exact');
inds = intersect(inds1, inds2);
if ~isempty(inds)
if length(inds) ~= 1
error([ 'Cannot calculate contrast because more than 1 dataset per session' 10 ...
'per subject. Merge datasets for each subject and try again.' ]);
end
% make file-up
[~,subname] = fileparts(STUDY.datasetinfo(inds).filename);
if isfield(ALLEEG,'filename')
if ~strcmp(subname,ALLEEG(inds).filename(1:end-4))
error('STUDY and ALLEEG mismatch, can''t figure out which file to use')
end
else
warning('No filename in ALLEEG, pulling data blindly from STUDY')
end
if contains(subname,'sub-')
if contains(subname,'ses-')
filename = [subname '_design' num2str(design_index) '.set'];
else
filename = [subname '_ses-' num2str(iSess) '_design' num2str(design_index) '.set'];
end
else
if contains(subname,'ses-')
filename = ['sub-' subname '_design' num2str(design_index) '.set'];
else
filename = ['sub-' subname '_ses-' num2str(iSess) '_design' num2str(design_index) '.set'];
end
end
% Creating fields for limo
% ------------------------
fprintf('pulling trials for %s ... \n',filename)
EEGTMP = std_lm_seteegfields(STUDY,ALLEEG(inds), inds,'datatype',model.defaults.type,'format', 'cell');
ALLEEG = eeg_store(ALLEEG, EEGTMP, inds);
file_fullpath = rel2fullpath(STUDY.filepath,ALLEEG(inds).filepath);
model.set_files{inds} = fullfile(file_fullpath , filename);
OUTEEG = [];
if all([ALLEEG(inds).trials] == 1)
OUTEEG.trials = 1;
else
OUTEEG.trials = sum([ALLEEG(inds).trials]);
end
filepath_tmp = rel2fullpath(STUDY.filepath,ALLEEG(inds).filepath);
OUTEEG.filepath = filepath_tmp;
OUTEEG.filename = filename;
OUTEEG.srate = ALLEEG(inds).srate;
OUTEEG.icaweights = ALLEEG(inds).icaweights;
OUTEEG.icasphere = ALLEEG(inds).icasphere;
OUTEEG.icawinv = ALLEEG(inds).icawinv;
OUTEEG.icachansind = ALLEEG(inds).icachansind;
OUTEEG.etc = ALLEEG(inds).etc;
OUTEEG.times = ALLEEG(inds).times;
if any(interpolated)
OUTEEG.chanlocs = mergedChanlocs;
OUTEEG.etc.interpolatedchannels = setdiff(1:length(OUTEEG.chanlocs), std_chaninds(OUTEEG, { ALLEEG(inds).chanlocs.labels }));
else
OUTEEG.chanlocs = ALLEEG(inds).chanlocs;
end
% update EEG.etc
OUTEEG.etc.merged{1} = ALLEEG(inds).filename;
% Def fields
OUTEEG.etc.datafiles.daterp = [];
OUTEEG.etc.datafiles.datspec = [];
OUTEEG.etc.datafiles.datersp = [];
OUTEEG.etc.datafiles.dattimef = [];
OUTEEG.etc.datafiles.datitc = [];
OUTEEG.etc.datafiles.icaerp = [];
OUTEEG.etc.datafiles.icaspec = [];
OUTEEG.etc.datafiles.icaersp = [];
OUTEEG.etc.datafiles.icatimef = [];
OUTEEG.etc.datafiles.icaitc = [];
% Filling fields
single_trials_filename = EEGTMP.etc.datafiles.(opt.measureori);
if exist(single_trials_filename,'file')
if strcmpi(measureflags.daterp,'on')
OUTEEG.etc.datafiles.daterp = single_trials_filename;
elseif strcmpi(measureflags.datspec,'on')
OUTEEG.etc.datafiles.datspec = single_trials_filename;
elseif strcmpi(measureflags.datersp,'on')
OUTEEG.etc.datafiles.datersp = single_trials_filename;
elseif strcmpi(measureflags.datitc,'on')
OUTEEG.etc.datafiles.datitc = single_trials_filename;
elseif strcmpi(measureflags.dattimef,'on')
OUTEEG.etc.datafiles.dattimef = single_trials_filename;
elseif strcmpi(measureflags.icaerp,'on')
OUTEEG.etc.datafiles.icaerp = single_trials_filename;
elseif strcmpi(measureflags.icaspec,'on')
OUTEEG.etc.datafiles.icaspec = single_trials_filename;
elseif strcmpi(measureflags.icaersp,'on')
OUTEEG.etc.datafiles.icaersp = single_trials_filename;
elseif strcmpi(measureflags.icaitc,'on')
OUTEEG.etc.datafiles.icaitc = single_trials_filename;
elseif strcmpi(measureflags.icatimef,'on')
OUTEEG.etc.datafiles.icatimef = single_trials_filename;
end
end
% Save info
EEG = OUTEEG;
save('-mat', fullfile( filepath_tmp, OUTEEG.filename), 'EEG');
clear OUTEEG filepath_tmp
% generate data files
% -------------------
fprintf('making up statistical model for %s ... \n',filename)
% save continuous and categorical data files
trialinfo = std_combtrialinfo(STUDY.datasetinfo, inds);
% [catMat,contMat,limodesign] = std_limodesign(factors, trialinfo, 'splitreg', opt.splitreg, 'interaction', opt.interaction);
[catMat,contMat,limodesign] = std_limodesign(factors, trialinfo, 'splitreg', 'off', 'interaction', opt.interaction);
if strcmpi(opt.splitreg,'on') && ~isempty(contMat)
for c=size(contMat,2):-1:1
splitreg{c} = limo_split_continuous(catMat,contMat(:,c)); % std_limodesign does something else when splitting regressors
end
contMat = cell2mat(splitreg);
opt.zscore = 0; % regressors are now zscored
end
% replace NaNs if necessary
if strcmpi(opt.contnan, 'off')
contMat(isnan(contMat)) = 0;
end
% copy results
model.cat_files{inds} = catMat;
model.cont_files{inds} = contMat;
if isfield(limodesign, 'categorical')
STUDY.limo.categorical = limodesign.categorical;
else
STUDY.limo.categorical = {};
end
if isfield(limodesign, 'continuous')
STUDY.limo.continuous = limodesign.continuous;
else
STUDY.limo.continuous = {};
end
STUDY.limo.subjects(inds).subject = STUDY.datasetinfo(inds(1)).subject;
STUDY.limo.subjects(inds).cat_file = catMat;
STUDY.limo.subjects(inds).cont_file = contMat;
end
end % exit session
end % exit subject
% then we add contrasts for conditions that were merged during design selection
% i.e. multiple categorical variables (factors) and yet not matching the number
% of variables (contrasts are then a weighted sum of the crossed factors)
if ~isempty(factors) && isfield(factors, 'value') && ...
sum(arrayfun(@(x) ~strcmpi(x.label,'group'),STUDY.design(opt.design).variable)) == 1 % only one non-continuous variable other than group
if length(STUDY.design(opt.design).variable(1).value) ~= length(factors) % and this var has more values than the number of factors
limocontrast = zeros(length(STUDY.design(opt.design).variable(1).value),length(factors)+1); % length(factors)+1 to add the constant
for n=length(factors):-1:1
factor_names{n} = factors(n).value;
end
index = find(arrayfun(@(x) ~strcmpi(x.label,'group'),STUDY.design(opt.design).variable)); % which one is not group
for c=1:length(STUDY.design(opt.design).variable(index).value)
limocontrast(c,1:length(factors)) = single(ismember(factor_names,STUDY.design(opt.design).variable(index).value{c}));
limocontrast(c,1:length(factors)) = limocontrast(c,1:length(factors)) ./ sum(limocontrast(c,1:length(factors))); % scale by the number of variables
end
end
end
% transpose
model.set_files = model.set_files';
model.cat_files = model.cat_files';
model.cont_files = model.cont_files';
if all(cellfun(@isempty, model.cat_files )), model.cat_files = []; end
if all(cellfun(@isempty, model.cont_files)), model.cont_files = []; end
% set model.defaults - all conditions no bootstrap
% -----------------------------------------------------------------
if strcmp(Analysis,'daterp') || strcmp(Analysis,'icaerp')
model.defaults.analysis = 'Time';
for s=nb_subjects:-1:1
vs(s) = ALLEEG(s).xmin*1000;
ve(s) = ALLEEG(s).xmax*1000;
end
model.defaults.start = max(vs);
model.defaults.end = min(ve);
if length(opt.timelim) == 2 && opt.timelim(1) < opt.timelim(end)
% start value
if opt.timelim(1) < model.defaults.start
fprintf('std_limo: Invalid time lower limit, using default value instead');
else
model.defaults.start = opt.timelim(1);
end
% end value
if opt.timelim(end) > model.defaults.end
fprintf('std_limo: Invalid time upper limit, using default value instead');
else
model.defaults.end = opt.timelim(end);
end
end
model.defaults.lowf = [];
model.defaults.highf = [];
elseif strcmp(Analysis,'datspec') || strcmp(Analysis,'icaspec')
model.defaults.analysis= 'Frequency';
if length(opt.freqlim) == 2
model.defaults.lowf = opt.freqlim(1);
model.defaults.highf = opt.freqlim(2);
else
error('std_limo: Frequency limits need to be specified');
end
model.defaults.start = [];
model.defaults.end = [];
elseif strcmp(Analysis,'dattimef') || any(strcmp(Analysis,{'icatimef','icaersp'}))
model.defaults.analysis = 'Time-Frequency';
for s=nb_subjects:-1:1
vs(s) = ALLEEG(s).xmin*1000;
ve(s) = ALLEEG(s).xmax*1000;
end
model.defaults.start = max(vs);
model.defaults.end = min(ve);
model.defaults.lowf = [];
model.defaults.highf = [];
if length(opt.timelim) == 2
model.defaults.start = opt.timelim(1);
model.defaults.end = opt.timelim(2);
end
if length(opt.freqlim) == 2
model.defaults.lowf = opt.freqlim(1);
model.defaults.highf = opt.freqlim(2);
else
error('std_limo: Frequency limits need to be specified');
end
end
model.defaults.fullfactorial = 0; % all variables
model.defaults.zscore = opt.zscore; % done that already
model.defaults.bootstrap = 0 ; % only for single subject analyses - not included for studies
model.defaults.tfce = 0; % only for single subject analyses - not included for studies
model.defaults.method = opt.method; % default is WLS
model.defaults.Level = 1; % 1st level analysis
model.defaults.type_of_analysis = 'Mass-univariate'; % option can be multivariate (work in progress)
model.defaults.labels = factors;
if ~exist('limocontrast','var')
[LIMO_files, procstatus] = limo_batch('model specification',model,[],STUDY);
else
contrast.mat = limocontrast;
[LIMO_files, procstatus] = limo_batch('both',model,contrast,STUDY);
if exist(fullfile([STUDY.filepath filesep 'derivatives']),'dir')
save(fullfile([STUDY.filepath filesep 'derivatives'],[STUDY.design(opt.design).name '_contrast.mat']),'limocontrast');
else
save(fullfile(STUDY.filepath,[STUDY.design(opt.design).name '_contrast.mat']),'limocontrast');
end
end
STUDY.limo.model = model;
STUDY.limo.datatype = Analysis;
STUDY.limo.chanloc = limoChanlocs;
STUDY.limo.betas = pop_listfactors(STUDY, 'gui', 'off', 'level', 'one', 'splitreg', opt.splitreg, 'interaction', opt.interaction);
if exist('limocontrast','var')
STUDY.limo.contrast = limocontrast;
end
% generate between session contrasts
% ----------------------------------
index = 1;
for s = 1:nb_subjects
sess_index = find(cellfun(@(x) strcmpi(x,uniqueSubjects{s}), allSubjects));
% matches sess_index = find(contains(LIMO_files.mat,uniqueSubjects{s}))
if length(sess_index) > 1
fprintf('std_limo, computing additional between sessions contrasts for subject %s\n',uniqueSubjects{s})
sess_name = allSessions(sess_index);
pairs = nchoosek(1:length(sess_index),2); % do all session pairs
for p=1:size(pairs,1)
strpair = [cell2mat(sess_name(pairs(p,1))) cell2mat(sess_name(pairs(p,2)))];
strpair(isspace(strpair)) = []; % remove spaces
filesout{p} = limo_contrast_sessions(cell2mat(LIMO_files.mat(sess_index(pairs(p,1)))), ...
cell2mat(LIMO_files.mat(sess_index(pairs(p,2)))),strpair);
end
for f=1:length(filesout)
for ff=1:length(filesout{f})
allcon{index} = filesout{f}{ff};
index = index +1;
end
end
clear filesout
end
end
% use same glm_name as limo_batch
design_name = STUDY.design(STUDY.currentdesign).name;
design_name(isspace(design_name)) = [];
if findstr(design_name,'STUDY.')
design_name = design_name(7:end);
end
glm_name = [STUDY.filename(1:end-6) '_' design_name '_GLM_' model.defaults.type '_' model.defaults.analysis '_' model.defaults.method];
% further split that list per regressor and group
if exist('allcon','var')
maxcon = max(cellfun(@(x) str2double(x(strfind(x,'con_')+4:strfind(x,'sess_')-1)),allcon));
for con=1:maxcon
index = find(cellfun(@(x) ~isempty(x),cellfun(@(x) strfind(x,['con_' num2str(con)]),allcon','UniformOutput',false)));
cell2csv([LIMO_files.LIMO filesep 'Between_sessions_con_' num2str(con) '_' glm_name '.txt'], allcon(index)');
if length(STUDY.group) > 1
for g= 1:length(STUDY.group)
% find subjects of group g
subset = find(arrayfun(@(x)(strcmpi(x.group,STUDY.group{g})), STUDY.datasetinfo));
for s=1:length(subset)
sub{s} = STUDY.datasetinfo(subset(s)).subject;
end
sub = unique(sub);
% find subjects of group g and contrast con
subcon = [];
for s = 1:length(sub)
if strfind(sub{s},'sub-')
subindex = find(cellfun(@(x) ~isempty(x),(cellfun(@(x) strfind(x,sub{s}),allcon','UniformOutput',false)))); % subject s group g
else
subindex = find(cellfun(@(x) ~isempty(x),(cellfun(@(x) strfind(x,['sub-' sub{s} ]),allcon','UniformOutput',false)))); % subject s group g
end
subcon = [subcon;intersect(index,subindex)];
end
% save
if ~isempty(subcon)
cell2csv([LIMO_files.LIMO filesep 'Between_sessions_con_' num2str(con) 'Gp' STUDY.group{g} '_' glm_name '.txt'], allcon(subcon)');
end
end
end
end
end
% Save STUDY - delete tmp files
% ------------------------------
cd(STUDY.filepath);
STUDY = pop_savestudy( STUDY, [],'filepath', STUDY.filepath,'savemode','resave');
keep_files = 'no';
if all(procstatus)
disp('All subjects have been successfully processed.')
else
if sum(procstatus)==0 % not a WLS issue - limo_batch errors for that and tells the user
errordlg2('all subjects failed to process, check limo batch report')
else
warndlg2('some subjects failed to process, check limo batch report','', 'non-modal')
end
% cleanup temp files - except for subjects without errors
db = dbstack;
if length(db) <= 2
keep_files = questdlg('Do you want to keep temp files of unsuccessulfully processed subjects','option for manual debugging','yes','no','no');
end
end
% delete
if isempty(keep_files) || strcmpi(keep_files,'no')
for s = 1:nb_subjects
delete(model.set_files{s});
end
else
for s = find(procstatus)
delete(model.set_files{s});
end
end
% -------------------------------------------------------------------------
% Return full path if 'filepath' is a relative path. The output format will
% fit the one of 'filepath'. That means that if 'filepath' is a cell array,
% then the output will a cell array too, and the same if is a string.
function file_fullpath = rel2fullpath(studypath,filepath)
nit = 1; if iscell(filepath), nit = length(filepath);end
for i = 1:nit
if iscell(filepath)
pathtmp = filepath{i};
else
pathtmp = filepath;
end
if ~isempty(pathtmp) && contains(pathtmp(end),filesep) %#ok<STRIFCND>
pathtmp = pathtmp(1:end-1);
end % Getting rid of filesep at the end
if ~isempty(pathtmp) && (contains(pathtmp(1:2),['.' filesep]) || ...
(isunix && pathtmp(1) ~= '/') || (ispc && pathtmp(2) ~= ':')) %#ok<STREMP>
if iscell(filepath)
file_fullpath{i} = fullfile(studypath,pathtmp(1:end));
else
file_fullpath = fullfile(studypath,pathtmp(1:end));
end
else
if iscell(filepath)
file_fullpath{i} = pathtmp;
else
file_fullpath = pathtmp;
end
end
end
% get file base name (from std_precomp)
% ------------------
function filebase = getfilename(filepath, subj, sess, fileSuffix, onlyOneSession)
if onlyOneSession
filebase = fullfile(filepath, [ subj fileSuffix ] );
else
sesStr = [ '0' sess ];
filebase = fullfile(filepath, [ subj '_ses-' sesStr(end-1:end) fileSuffix ] );
end