[422372]: / functions / studyfunc / std_dipoleclusters.m

Download this file

269 lines (258 with data), 13.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
% std_dipoleclusters - Plots clusters of ICs as colored dipoles in MRI
% images (side, rear, top and oblique angles possible)
%
% std_dipoleclusters(STUDY,ALLEEG,'key1',value1, 'key2',value2, ... );
%
% Inputs:
% STUDY - EEGLAB STUDY set
% ALLEEG - vector of the EEG datasets included in the STUDY structure
%
% Optional inputs:
% 'clusters' - [vector of numbers] list of clusters to plot in same head space
% 'title' - [string] figure title
% 'viewnum' - [vector] list of views to plot: 1=top, 2=side, 3=rear, 4 is an oblique view;
% length(viewnum) gives the number of subplots that will be produced and the
% values within the vector tell the orientation and order of views
% 'rowcolplace' - [rows cols subplot] If plotting into an existing figure, specify the number of rows,
% columns and the subplot number to start plotting dipole panels.
% 'colors' - [vector or matrix] if 1 x 3 vector of RGB values, this will plot all dipoles as the
% same color. ex. [1 0 0] is red, [0 0 1] is blue, [0 1 0] is green.
% If a matrix, should be n x 3, with the number of rows equal to the number
% of clusters to be plotted and the columns should be RGB values for each.
% If [], will plot clusters as 'jet' colorscale from the first to the last cluster
% requested (therefore an alternate way to control dipole color is to input a specific
% order of clusters).
% [] will assign colors from hsv color scale.
% 'centroid' - ['only', 'add', 'off'] 'only' will plot only cluster centroids, 'add' will superimpose
% centroids over cluster dipoles, 'off' will skip centroid plotting and only plot
% cluster-member dipoles.
%
% Authors: Julie Onton, SCCN/INC UCSD, June 2009
% Copyright (C) Julie Onton, SCCN/INC/UCSD, October 11, 2009
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function std_dipoleclusters(STUDY,ALLEEG, varargin);
if nargin < 2
help std_dipoleclusters;
return;
end
% Set default values------------------------------------------------------------------------
if strcmp(STUDY.cluster(2),'outlier 2') % don't plot outlier cluster #2
clustvec = [3:length(STUDY.cluster)]; % plot all clusters in STUDY
else
clustvec = [2:length(STUDY.cluster)]; % plot all clusters in STUDY
end
onecolor = [];
colvec = [];
centroid = 'off';
viewnum = [1:4]; % plot all views and oblique
rowcolplace = [2 2 1]; % 2 X 2 figure starting in subplot 1
figureon = 1; % plot on a new figure
ttl = ''; % no title
%---------------------------------------------------------------------------------
for k = 3:2:nargin
switch varargin{k-2}
case 'clusters'
clusters = varargin{k-1}; % redefine from all to specified clusters
case 'title'
ttl = varargin{k-1};
case 'viewnum',
viewnum = varargin{k-1};
case 'rowcolplace' %, mode = varargin{k-1}; % what is mode? JO
rowcolplace = varargin{k-1};
if length(rowcolplace) < 3
fprintf('\nThe variable ''rowcolplace'' must contain 3 values.\n');
return;
end
row = rowcolplace(1);
col = rowcolplace(2);
place = rowcolplace(3);
figureon = 0; % don't pop a new figure if plotting into existing fig
case 'colors'
colvec = varargin{k-1};
case 'centroid'
centroid = varargin{k-1};
end
end
% adjust color matrix for dipoles:---------------
if isempty(colvec)
cols = jet(length(clusters));% default colors
else
cols = colvec; % input RGB colors
end;
% extract IC cluster and data path info from STUDY structure
clear clustcps fullpaths gdcomps
x = cell(1,length(unique({STUDY.datasetinfo.subject})));
subjs = unique_bc({STUDY.datasetinfo.subject});
origlist = cell(1,length(unique({STUDY.datasetinfo.subject})));
sets = cell(1,length(unique({STUDY.datasetinfo.subject})));
for clust = 1:length(STUDY.cluster)
clustcps{clust} = x;
for st = 1:size(STUDY.cluster(clust).sets,2)
currset = STUDY.cluster(clust).sets(1,st);
currcomp = STUDY.cluster(clust).comps(1,st);
subjidx = strmatch(STUDY.datasetinfo(currset).subject,subjs);
clustcps{clust}{subjidx}(end+1) = currcomp;
origlist{subjidx} = [origlist{subjidx} currcomp];
[origlist{subjidx} idx] = unique_bc(origlist{subjidx});
sets{subjidx} = currset;
end;
end
%-----------------------------------------------------------
% extract dipole info for ALL ICs to be plotted subj by subj
for nx = 1:length(origlist)
dipsources = [];
if ~isempty(origlist{nx})
EEG = ALLEEG(sets{nx}); % call in a dataset from subj
if isfield(EEG.dipfit.model,'diffmap')
EEG.dipfit.model = rmfield(EEG.dipfit.model,'diffmap');
end
if isfield(EEG.dipfit.model,'active')
EEG.dipfit.model = rmfield(EEG.dipfit.model,'active');
end
if isfield(EEG.dipfit.model,'select')
EEG.dipfit.model = rmfield(EEG.dipfit.model,'select');
end
dipsources.posxyz = EEG.dipfit.model(origlist{nx}(1)).posxyz;
dipsources.momxyz = EEG.dipfit.model(origlist{nx}(1)).momxyz;
dipsources.rv = EEG.dipfit.model(origlist{nx}(1)).rv;p=1;
for w = 1:length(origlist{nx})
dipsources(1,p).posxyz = EEG.dipfit.model(origlist{nx}(w)).posxyz;
dipsources(1,p).momxyz = EEG.dipfit.model(origlist{nx}(w)).momxyz;
dipsources(1,p).rv = EEG.dipfit.model(origlist{nx}(w)).rv;
p=p+1;
end
allbesa1{nx} = dipsources; new = 0;
end
end;
%-----------------------------------------------------------
% collect cluster dipole info from extracted dipole infos (above)
%%%%%%%%%%%%%%%%%%%%%%%%%
new = 1; pp=1; bic = 1;
centrstr = struct('posxyz',[0 0 0],'momxyz',[0 0 0],'rv',0);
for clst =1:length(clusters)
clust = clusters(clst);
centr = [];
centr2 = [];
for nx = 1:length(clustcps{clust})
if ~isempty(clustcps{clust}{nx})
for k = 1:length(clustcps{clust}{nx})
if new == 1
allbesa = allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k)));
centr = [centr; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(1,:)];
if size(allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz,1) > 1& allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,1) ~= 0 % actual values, not zero
if allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,2) > 0 % on the wrong side, switch with centr1
centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)];
centr2(end,2) = centr2(end,2)*-1; centr1(end,2) = centr1(end,2)*-1;
else
centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)];
end
end
new = 0;
else
allbesa(1,end+1) = allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k)));
centr = [centr; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(1,:)];
if size(allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz,1) > 1 && allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,1) ~= 0 % actual values, not zero
if allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,2) > 0 % on the wrong side, switch with centr1
centr2 = [centr2; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)];
centr2(end,2) = centr2(end,2)*-1; centr1(end,2) = centr1(end,2)*-1;
else
centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)];
end
end
end;
colset{pp} = cols(clst,:); pp = pp+1;
end
end
end
if length(allbesa) > 1
centr = mean(centr,1);
centr2 = mean(centr2,1);
centrstr(clst).posxyz = centr;
centrstr(clst).momxyz = allbesa(end).momxyz(1,:);
centrstr(clst).rv = 2;
centcols{clst} = cols(clst,:);
centcols2{clst} = cols(clst,:)/5;
if ~isempty(find(centr2))
centrstr2(bic).posxyz = centr2;
centrstr2(bic).momxyz = allbesa(end).momxyz(1,:);
centrstr2(bic).rv = 2;
bic = bic + 1; % separate count for bilaterals
end
end
end
if figureon == 1
figure; row = 2; col = 2; place= 1;
end
%-------------------------------------------
% PLOT the clusster dipoles:
if length(allbesa) > 1
for sbpt = 1:length(viewnum)
if sbpt < 4
prjimg = 'off';
else
prjimg = 'on';
end
sbplot(row,col,place)
if strcmp(centroid,'only')
dipplot(centrstr,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0);
if ~isempty(find(centrstr2(1).posxyz)) % only if there were bilaterals
dipplot(centrstr2,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(.8)
else
camzoom(1)
end
elseif strcmp(centroid,'add')
dipplot(allbesa,'image','mri','gui','off','dipolelength',0,'dipolesize',25,'normlen','on','spheres','on','color',colset,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0);
dipplot(centrstr,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols2,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(.8)
if ~isempty(find(centrstr2(1).posxyz)) % only if there were bilaterals
dipplot(centrstr2,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols2,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0);camzoom(.8)
else
camzoom(1)
end
else
dipplot(allbesa,'image','mri','gui','off','dipolelength',0,'dipolesize',25,'normlen','on','spheres','on','color',colset,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(1.1)
end
if viewnum(sbpt) == 3
view(0,0)
elseif viewnum(sbpt) == 1
view(0,90)
elseif viewnum(sbpt) == 4
view(63,22);
end
place = place+1;
end;
if ~isempty(ttl)
if sbpt == 4 % if oblique
ph = text(-75,-75,125,ttl); set(ph,'color','r');
elseif sbpt == 1 % 2d image:
ph = text(-50,110,125,ttl); set(ph,'color','r');
elseif sbpt == 2 % 2d image:
ph = text(-75,-75,125,ttl); set(ph,'color','r');
elseif sbpt == 3 % 2d image:
ph = text(-100,-50,130,ttl); set(ph,'color','r');
end
end
end