[422372]: / functions / studyfunc / std_builddesignmat.m

Download this file

199 lines (185 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
% STD_BUILDDESIGNMAT - Build the design matrix for an specific design
% specified in the structure ''design'' provided as input
%
% Usage:
%
% [tmpdmat,colLabels,catflag] = std_builddesignmat(design, trialinfo, 1)
%
% Inputs:
% design - Design structure as in the STUDY
% trialinfo - Structure of trial information. Each field should be a
% cell array with one element for each trial
% expanding - Expand the design matrix
% Optional inputs:
%
% Outputs:
% tmpdmat - Design matrix
% colLabels - Labels for each column of the design matrix
% catflag - Binary vector with dimension equal to the number of columns in the design matrix.
% [0] mean a continuous regressor, [1] means a categotical one.
%
% See also: std_combtrialinfo , std_plodtmat
%
% Authors: Ramon Martinez-Cancino
%
% Copyright (C) 2015 Ramon Martinez-Cancino, UCSD, INC, SCCN
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [tmpdmat,colLabels,catflag] = std_builddesignmat(design, trialinfo, expanding)
if nargin < 3, expanding = 0; end
ntrials = length(trialinfo);
varindx = 1:length(design.variable);
% checking if 'group' var (temporal commit to detect group vars, right now only detecting variable 'group')
groupindx = find(strcmp({design.variable.label},'group'));
if ~isempty(groupindx)
varindx(groupindx) = [];
end
tmpdmat = NaN(ntrials,length(varindx));
catflag = strcmp({design.variable.vartype}, 'categorical');
colLabels = {design.variable.label};
for i = 1 : length(varindx)
% case for cont variables
if ~catflag(i)
[trialindsx, eventvals] = std_gettrialsind(trialinfo,design.variable(varindx(i)).label, '');
if ~isempty(trialindsx)
tmpdmat(trialindsx,i) = eventvals;
end
else % case for cat variables
varvaluetmp = design.variable(varindx(i)).value;
% Expanding cells cells
c = 1; varlist = {}; varvallength = []; facval_indx = []; dmatval = 1; jcount = 1;
for ivar = 1:length(varvaluetmp)
% Length of varvaluetmp(i)
if iscellstr(varvaluetmp(ivar))
varvallength(ivar) = length(varvaluetmp(ivar)) ;
elseif iscell(varvaluetmp(ivar))
varvallength(ivar) = length(varvaluetmp{ivar}) ;
else
varvallength(ivar) = length(varvaluetmp{ivar}) ;
end
% Retrieving value and assigning index in design matrix
if ~iscell(varvaluetmp{ivar}) && varvallength(ivar) == 1
varlist{c} = varvaluetmp{ivar};
varindxjoint{ivar} = c;
facval_indx(c) = dmatval;
c = c+1;
else
tmpcindx = [];
for ival = 1: varvallength(ivar)
if iscellstr(varvaluetmp{ivar}(ival))
varlist{c} = varvaluetmp{ivar}{ival};
else
varlist{c} = varvaluetmp{ivar}(ival);
end
facval_indx(c) = dmatval;
tmpcindx = cat(1,tmpcindx,c);
c = c+1;
end
varindxjoint{ivar} = tmpcindx;
end
dmatval = dmatval+1;
%---
for j = 1 :varvallength(ivar)
%
if iscellstr(varlist(varindxjoint{ivar}))
facval = varlist{varindxjoint{ivar}(j)};
elseif iscell(varlist(varindxjoint{ivar}))
tmpval = varlist(varindxjoint{ivar});
if isnumeric(tmpval{j})
facval = tmpval{j};
else
facval = tmpval(j);
end
elseif isnumeric(varlist(varindxjoint{ivar}))
facval = varlist(varindxjoint{ivar}(j));
elseif ischar(varlist(varindxjoint{ivar}))
% facval = varlist(varindxjoint{ivar}(j));
end
% Find indices of triasl for facval
[trialindsx, eventvals] = std_gettrialsind(trialinfo,design.variable(varindx(i)).label, facval);
% Populating the design matrix
if ~isempty(trialindsx)
tmpdmat(trialindsx,i) = facval_indx(jcount);
jcount = jcount+1;
end
end
%---
end
end
end
% -------------------------------------------------------------------------
% expand categ var
if expanding == 1
% count number of columns
nCols = 0;
for iCol = 1:size(tmpdmat,2)
if catflag(iCol)
nCols = nCols+length(design.variable(varindx(iCol)).value);
else
nCols = nCols+1;
end
end
tmpdmatExpanded = NaN(size(tmpdmat,1),nCols);
countCol = 0;
for iCol = 1:size(tmpdmat,2)
if catflag(iCol)
% get unique values for this given categ var
uniqueVals = unique(tmpdmat(:,iCol));
uniqueVals(isnan(uniqueVals)) = [];
% scan unique values
prevCol = countCol;
for iUnique = 1:length(design.variable(varindx(iCol)).value)
countCol = countCol+1;
try tmpval = uniqueVals(iUnique); catch, tmpval = NaN; end
trialSelect = tmpdmat(:,iCol) == tmpval;
otherCols = prevCol+setdiff(1:length(uniqueVals), iUnique);
% putting 0 in other columns ensures we process the NaNs
tmpdmatExpanded(trialSelect, countCol ) = 1;
tmpdmatExpanded(trialSelect, otherCols) = 0;
% get the label for that column
if ischar(design.variable(varindx(iCol)).value{iUnique})
colLabels{countCol} = [design.variable(varindx(iCol)).label '-' design.variable(varindx(iCol)).value{iUnique}];
elseif iscell(design.variable(varindx(iCol)).value{iUnique})
% Concat all vals
varnametmp = design.variable(varindx(iCol)).value{iUnique}{1};
for ivar = 2: length(design.variable(varindx(iCol)).value{iUnique})
varnametmp = [varnametmp '&' design.variable(varindx(iCol)).value{iUnique}{ivar}];
end
colLabels{countCol} = [design.variable(varindx(iCol)).label '-' varnametmp];
elseif isnumeric(design.variable(varindx(iCol)).value{iUnique})
colLabels{countCol} = [design.variable(varindx(iCol)).label '-' int2str(design.variable(varindx(iCol)).value{iUnique})];
end
end
else
countCol = countCol+1;
colLabels{countCol} = design.variable(varindx(iCol)).label;
tmpdmatExpanded(:,countCol) = tmpdmat(:,iCol);
end
end
tmpdmat = tmpdmatExpanded;
end
tmpdmat(:,end+1) = 1;
colLabels{numel(colLabels)+1} = 'constant';