[422372]: / functions / statistics / ttest2_cell.m

Download this file

151 lines (137 with data), 5.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
% TTEST2_CELL - compute unpaired t-test. Allow fast computation of
% multiple t-test using matrix manipulation.
%
% Usage:
% >> [T df] = ttest2_cell( { a b } );
% >> [T df] = ttest2_cell(a, b);
% >> [T df] = ttest2_cell(a, b, 'inhomogenous');
%
% Inputs:
% a,b = data consisting of UNPAIRED arrays to be compared. The last
% dimension of the data array is used to compute the t-test.
% 'inhomogenous' = use computation for the degree of freedom using
% inhomogenous variance. By default the computation of
% the degree of freedom is done with homogenous
% variances.
%
% Outputs:
% T - T-value
% df - degree of freedom (array)
%
% Example:
% a = { rand(1,10) rand(1,10)+0.5 }
% [T df] = ttest2_cell(a)
% signif = 2*tcdf(-abs(T), df(1))
%
% % for comparison, the same using the Matlab t-test function
% [h p ci stats] = ttest2(a{1}', a{2}');
% [ stats.tstat' p]
%
% % fast computation (fMRI scanner volume 100x100x100 and 10 control
% % subjects and 12 test subjects). The computation itself takes 0.5
% % seconds instead of half an hour using the standard approach (1000000
% % loops and Matlab t-test function)
% a = rand(100,100,100,10); b = rand(100,100,100,10);
% [F df] = ttest_cell({ a b });
%
% Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2005
% (thank you to G. Rousselet for providing the formula for
% inhomogenous variances).
%
% Reference:
% Schaum's outlines in statistics (3rd edition). 1999. Mc Graw-Hill.
% Howel, Statistical Methods for Psychology. 2009. Wadsworth Publishing.
% Copyright (C) Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [tval, df] = ttest2_cell(a,b,c) % assumes equal variances
if nargin < 1
help ttest2_cell;
return;
end
homogenous = 'homogenous';
if nargin > 1 && ischar(b)
homogenous = b;
end
if nargin > 2 && ischar(c)
homogenous = c;
end
if iscell(a),
b = a{2};
a = a{1};
end
if ~strcmpi(homogenous, 'inhomogenous') && ~strcmpi(homogenous, 'homogenous')
error('Value for homogenous parameter can only be ''homogenous'' or ''inhomogenous''');
end
nd = myndims(a);
na = size(a, nd);
nb = size(b, nd);
meana = mymean(a, nd);
meanb = mymean(b, nd);
if strcmpi(homogenous, 'inhomogenous')
% inhomogenous variance from Howel, 2009, "Statistical Methods for Psychology"
% thank you to G. Rousselet for providing these formulas
m = meana - meanb;
s1 = var(a,0,nd) ./ na;
s2 = var(b,0,nd) ./ nb;
se = sqrt(s1 + s2);
sd = sqrt([s1.*na, s2.*nb]);
tval = m ./ se;
df = ((s1 + s2).^2) ./ ((s1.^2 ./ (na-1) + s2.^2 ./ (nb-1)));
else
sda = mystd(a, [], nd);
sdb = mystd(b, [], nd);
sp = sqrt(((na-1)*sda.^2+(nb-1)*sdb.^2)/(na+nb-2));
tval = (meana-meanb)./sp/sqrt(1/na+1/nb);
df = na+nb-2;
end
% check values againg Matlab statistics toolbox
% [h p ci stats] = ttest2(a', b');
% [ tval stats.tstat' ]
function val = myndims(a)
if ndims(a) > 2
val = ndims(a);
else
if size(a,1) == 1,
val = 2;
elseif size(a,2) == 1,
val = 1;
else
val = 2;
end
end;
function res = mymean( data, varargin) % deal with complex numbers
res = mean( data, varargin{:});
if ~isreal(data)
res = abs( res );
end
function res = mystd( data, varargin) % deal with complex numbers
if ~isreal(data)
res = std( abs(data), varargin{:});
else
res = sqrt(sum( bsxfun(@minus, data, mean( data, varargin{2})).^2, varargin{2})/(size(data,varargin{2})-1)); % 8 percent speedup
%res = std( data, varargin{:});
end