[422372]: / functions / sigprocfunc / runica_mlb.m

Download this file

1098 lines (1057 with data), 43.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
% RUNICA - Perform Independent Component Analysis (ICA) decomposition
% of input data using the logistic infomax ICA algorithm of
% Bell & Sejnowski (1995) with the natural gradient feature
% of Amari, Cichocki & Yang, or optionally the extended-ICA
% algorithm of Lee, Girolami & Sejnowski, with optional PCA
% dimension reduction. Annealing based on weight changes is
% used to automate the separation process.
% Usage:
% >> [weights,sphere] = runica(data); % train using defaults
% else
% >> [weights,sphere,compvars,bias,signs,lrates,activations] ...
% = runica(data,'Key1',Value1',...);
% Input:
% data = input data (chans,frames*epochs).
% Note that if data consists of multiple discontinuous epochs,
% each epoch should be separately baseline-zero'd using
% >> data = rmbase(data,frames,basevector);
%
% Optional keywords [argument]:
% 'extended' = [N] perform TANH "extended-ICA" with sign estimation
% N training blocks. If N > 0, automatically estimate the
% number of sub-Gaussian sources. If N < 0, fix number of
% sub-Gaussian comps to -N [faster than N>0] (default|0 -> off)
% 'pca' = [N] decompose a principal component (default -> 0=off)
% subspace of the data. Value is the number of PCs to retain.
% 'ncomps' = [N] number of ICA components to compute (default -> chans or 'pca' arg)
% using rectangular ICA decomposition
% 'sphering' = ['on'/'off'] flag sphering of data (default -> 'on')
% 'weights' = [W] initial weight matrix (default -> EYE)
% (Note: if 'sphering' 'off', default -> SPHER)
% 'lrate' = [rate] initial ICA learning rate (<< 1) (default -> heuristic)
% 'block' = [N] ICA block size (<< datalength) (default -> heuristic)
% 'anneal' = annealing constant (0,1] (defaults -> 0.90, or 0.98, extended)
% controls speed of convergence
% 'annealdeg' = [N] degrees weight change for annealing (default -> 70)
% 'stop' = [f] stop training when weight-change < this (default -> 1e-6
% if less than 33 channel and 1E-7 otherwise)
% 'maxsteps' = [N] max number of ICA training steps (default -> 512)
% 'bias' = ['on'/'off'] perform bias adjustment (default -> 'on')
% 'momentum' = [0<f<1] training momentum (default -> 0)
% 'specgram' = [srate loHz hiHz frames winframes] decompose a complex time/frequency
% transform of the data (Note: winframes must divide frames)
% (defaults [srate 0 srate/2 size(data,2) size(data,2)])
% 'posact' = make all component activations net-positive(default 'on'}
% 'verbose' = give ascii messages ('on'/'off') (default -> 'on')
%
% Outputs: [Note: RO means output in reverse order of projected mean variance
% unless starting weight matrix passed ('weights' above)]
% weights = ICA weight matrix (comps,chans) [RO]
% sphere = data sphering matrix (chans,chans) = spher(data)
% Note that unmixing_matrix = weights*sphere {if sphering off -> eye(chans)}
% compvars = back-projected component variances [RO]
% bias = vector of final (ncomps) online bias [RO] (default = ZEROS)
% signs = extended-ICA signs for components [RO] (default = ONES)
% [ -1 = sub-Gaussian; 1 = super-Gaussian]
% lrates = vector of learning rates used at each training step [RO]
% activations = activation time courses of the output components (ncomps,frames*epochs)
%
% Authors: Scott Makeig with contributions from Tony Bell, Te-Won Lee,
% Tzyy-Ping Jung, Sigurd Enghoff, Michael Zibulevsky, Delorme Arnaud,
% CNL/The Salk Institute, La Jolla, 1996-
% Uses: POSACT
% Reference (please cite):
%
% Makeig, S., Bell, A.J., Jung, T-P and Sejnowski, T.J.,
% "Independent component analysis of electroencephalographic data,"
% In: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural
% Information Processing Systems 8:145-151, MIT Press, Cambridge, MA (1996).
%
% Toolbox Citation:
%
% Makeig, Scott et al. "EEGLAB: ICA Toolbox for Psychophysiological Research".
% WWW Site, Swartz Center for Computational Neuroscience, Institute of Neural
% Computation, University of San Diego California
% <www.sccn.ucsd.edu/eeglab/>, 2000. [World Wide Web Publication].
%
% For more information:
% http://www.sccn.ucsd.edu/eeglab/icafaq.html - FAQ on ICA/EEG
% http://www.sccn.ucsd.edu/eeglab/icabib.html - mss. on ICA & biosignals
% http://www.cnl.salk.edu/~tony/ica.html - math. mss. on ICA
% Copyright (C) 1996 Scott Makeig et al, SCCN/INC/UCSD, scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
%%%%%%%%%%%%%%%%%%%%%%%%%%% Edit history %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RUNICA - by Scott Makeig with contributions from Tony Bell, Te-Won Lee
% Tzyy-Ping Jung, Sigurd Enghoff, Michael Zibulevsky et al.
% CNL / Salk Institute 1996-00
% 04-30-96 built from icatest.m and ~jung/.../wtwpwica.m -sm
% 07-28-97 new RUNICA, adds bias (default on), momentum (default off),
% extended-ICA (Lee & Sejnowski, 1997), cumulative angledelta
% (until lrate drops), keywords, signcount for speeding extended-ICA
% 10-07-97 put ACOS outside verbose loop; verbose 'off' wasn't stopping -sm
% 11-11-97 adjusted help msg -sm
% 11-30-97 return eye(chans) if sphering 'off' or 'none' (undocumented option) -sm
% 02-27-98 use PINV instead of INV to rank order comps if ncomps < chans -sm
% 04-28-98 added 'posact' and 'pca' flags -sm
% 07-16-98 reduced length of RANDPERM for kurtosis subset calc. -se & sm
% 07-19-98 fixed typo in weights def. above -tl & sm
% 12-21-99 added 'specgram' option suggested by Michael Zibulevsky, UNM -sm
% 12-22-99 fixed RAND sizing inefficiency on suggestion of Mike Spratling, UK -sm
% 01-11-00 fixed RAND sizing bug on suggestion of Jack Foucher, Strasbourg -sm
% 12-18-00 test for existence of Sig Proc Tlbx function 'specgram'; improve
% 'specgram' option arguments -sm
% 01-25-02 reformated help & license -ad
% 01-25-02 lowered default lrate and block -ad
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [weights,sphere,meanvar,bias,signs,lrates,activations,y,loglik] = runica(data,p1,v1,p2,v2,p3,v3,p4,v4,p5,v5,p6,v6,p7,v7,p8,v8,p9,v9,p10,v10,p11,v11,p12,v12,p13,v13,p14,v14)
if nargin < 1
help runica
return
end
[chans frames] = size(data); % determine the data size
urchans = chans; % remember original data channels
datalength = frames;
if chans<2
fprintf('\nrunica() - data size (%d,%d) too small.\n\n', chans,frames);
return
end
%
%%%%%%%%%%%%%%%%%%%%%% Declare defaults used below %%%%%%%%%%%%%%%%%%%%%%%%
%
MAX_WEIGHT = 1e8; % guess that weights larger than this have blown up
DEFAULT_STOP = 1e-6; % stop training if weight changes below this
DEFAULT_ANNEALDEG = 60; % when angle change reaches this value,
DEFAULT_ANNEALSTEP = 0.98; % anneal by multiplying lrate by this
DEFAULT_EXTANNEAL = 0.98; % or this if extended-ICA
DEFAULT_MAXSTEPS = 500; % stop training after this many steps
DEFAULT_MOMENTUM = 0.0; % default momentum weight
DEFAULT_BLOWUP = 1000000000.0; % = learning rate has 'blown up'
DEFAULT_BLOWUP_FAC = 0.8; % when lrate 'blows up,' anneal by this fac
DEFAULT_RESTART_FAC = 0.9; % if weights blowup, restart with lrate
% lower by this factor
MIN_LRATE = 0.0001; % if weight blowups make lrate < this, quit
MAX_LRATE = 0.1; % guard against uselessly high learning rate
DEFAULT_LRATE = 0.00065/log(chans);
% heuristic default - may need adjustment
% for large or tiny data sets!
% DEFAULT_BLOCK = floor(sqrt(frames/4)); % heuristic default
DEFAULT_BLOCK = ceil(min(5*log(frames),0.3*frames)); % heuristic
% - may need adjustment!
% Extended-ICA option:
DEFAULT_EXTENDED = 1; % default off
DEFAULT_EXTBLOCKS = 1; % number of blocks per kurtosis calculation
DEFAULT_NSUB = 0; % initial default number of assumed sub-Gaussians
% for extended-ICA
DEFAULT_EXTMOMENTUM = 0.5; % momentum term for computing extended-ICA kurtosis
MAX_KURTSIZE = 6000; % max points to use in kurtosis calculation
MIN_KURTSIZE = 2000; % minimum good kurtosis size (flag warning)
SIGNCOUNT_THRESHOLD = 25; % raise extblocks when sign vector unchanged
% after this many steps
SIGNCOUNT_STEP = 2; % extblocks increment factor
DEFAULT_SPHEREFLAG = 'on'; % use the sphere matrix as the default
% starting weight matrix
DEFAULT_PCAFLAG = 'off'; % don't use PCA reduction
DEFAULT_POSACTFLAG = 'on'; % use posact()
DEFAULT_VERBOSE = 1; % write ascii info to calling screen
DEFAULT_BIASFLAG = 1; % default to using bias in the ICA update rule
%
%%%%%%%%%%%%%%%%%%%%%%% Set up keyword default values %%%%%%%%%%%%%%%%%%%%%%%%%
%
if nargout < 2,
fprintf('runica() - needs at least two output arguments.\n');
return
end
epochs = 1; % do not care how many epochs in data
pcaflag = DEFAULT_PCAFLAG;
sphering = DEFAULT_SPHEREFLAG; % default flags
posactflag = DEFAULT_POSACTFLAG;
verbose = DEFAULT_VERBOSE;
block = DEFAULT_BLOCK; % heuristic default - may need adjustment!
lrate = DEFAULT_LRATE;
annealdeg = DEFAULT_ANNEALDEG;
annealstep = 0; % defaults declared below
nochange = NaN;
momentum = DEFAULT_MOMENTUM;
maxsteps = DEFAULT_MAXSTEPS;
weights = 0; % defaults defined below
ncomps = chans;
biasflag = DEFAULT_BIASFLAG;
extended = DEFAULT_EXTENDED;
extblocks = DEFAULT_EXTBLOCKS;
kurtsize = MAX_KURTSIZE;
signsbias = 0.02; % bias towards super-Gaussian components
extmomentum= DEFAULT_EXTMOMENTUM; % exp. average the kurtosis estimates
nsub = DEFAULT_NSUB;
wts_blowup = 0; % flag =1 when weights too large
wts_passed = 0; % flag weights passed as argument
%
%%%%%%%%%% Collect keywords and values from argument list %%%%%%%%%%%%%%%
%
if (nargin> 1 && rem(nargin,2) == 0)
fprintf('runica(): Even number of input arguments???')
return
end
for i = 3:2:nargin % for each Keyword
Keyword = eval(['p',int2str((i-3)/2 +1)]);
Value = eval(['v',int2str((i-3)/2 +1)]);
if ~ischar(Keyword)
fprintf('runica(): keywords must be strings')
return
end
Keyword = lower(Keyword); % convert upper or mixed case to lower
if strcmp(Keyword,'weights') || strcmp(Keyword,'weight')
if ischar(Value)
fprintf(...
'runica(): weights value must be a weight matrix or sphere')
return
else
weights = Value;
wts_passed =1;
end
elseif strcmp(Keyword,'ncomps')
if ischar(Value)
fprintf('runica(): ncomps value must be an integer')
return
end
if ncomps < urchans && ncomps ~= Value
fprintf('runica(): Use either PCA or ICA dimension reduction');
return
end
ncomps = Value;
if ~ncomps,
ncomps = chans;
end
elseif strcmp(Keyword,'pca')
if ncomps < urchans && ncomps ~= Value
fprintf('runica(): Use either PCA or ICA dimension reduction');
return
end
if ischar(Value)
fprintf(...
'runica(): pca value should be the number of principal components to retain')
return
end
pcaflag = 'on';
ncomps = Value;
if ncomps > chans || ncomps < 1,
fprintf('runica(): pca value must be in range [1,%d]\n',chans)
return
end
chans = ncomps;
elseif strcmp(Keyword,'posact')
if ~ischar(Value)
fprintf('runica(): posact value must be on or off')
return
else
Value = lower(Value);
if ~strcmp(Value,'on') && ~strcmp(Value,'off'),
fprintf('runica(): posact value must be on or off')
return
end
posactflag = Value;
end
elseif strcmp(Keyword,'lrate')
if ischar(Value)
fprintf('runica(): lrate value must be a number')
return
end
lrate = Value;
if lrate>MAX_LRATE || lrate <0,
fprintf('runica(): lrate value is out of bounds');
return
end
if ~lrate,
lrate = DEFAULT_LRATE;
end
elseif strcmp(Keyword,'block') || strcmp(Keyword,'blocksize')
if ischar(Value)
fprintf('runica(): block size value must be a number')
return
end
block = floor(Value);
if ~block,
block = DEFAULT_BLOCK;
end
elseif strcmp(Keyword,'stop') || strcmp(Keyword,'nochange') ...
| strcmp(Keyword,'stopping')
if ischar(Value)
fprintf('runica(): stop wchange value must be a number')
return
end
nochange = Value;
elseif strcmp(Keyword,'maxsteps') || strcmp(Keyword,'steps')
if ischar(Value)
fprintf('runica(): maxsteps value must be an integer')
return
end
maxsteps = Value;
if ~maxsteps,
maxsteps = DEFAULT_MAXSTEPS;
end
if maxsteps < 0
fprintf('runica(): maxsteps value (%d) must be a positive integer',maxsteps)
return
end
elseif strcmp(Keyword,'anneal') || strcmp(Keyword,'annealstep')
if ischar(Value)
fprintf('runica(): anneal step value (%2.4f) must be a number (0,1)',Value)
return
end
annealstep = Value;
if annealstep <=0 || annealstep > 1,
fprintf('runica(): anneal step value (%2.4f) must be (0,1]',annealstep)
return
end
elseif strcmp(Keyword,'annealdeg') || strcmp(Keyword,'degrees')
if ischar(Value)
fprintf('runica(): annealdeg value must be a number')
return
end
annealdeg = Value;
if ~annealdeg,
annealdeg = DEFAULT_ANNEALDEG;
elseif annealdeg > 180 || annealdeg < 0
fprintf('runica(): annealdeg (%3.1f) is out of bounds [0,180]',...
annealdeg);
return
end
elseif strcmp(Keyword,'momentum')
if ischar(Value)
fprintf('runica(): momentum value must be a number')
return
end
momentum = Value;
if momentum > 1.0 || momentum < 0
fprintf('runica(): momentum value is out of bounds [0,1]')
return
end
elseif strcmp(Keyword,'sphering') || strcmp(Keyword,'sphereing') ...
| strcmp(Keyword,'sphere')
if ~ischar(Value)
fprintf('runica(): sphering value must be on, off, or none')
return
else
Value = lower(Value);
if ~strcmp(Value,'on') && ~strcmp(Value,'off') && ~strcmp(Value,'none'),
fprintf('runica(): sphering value must be on or off')
return
end
sphering = Value;
end
elseif strcmp(Keyword,'bias')
if ~ischar(Value)
fprintf('runica(): bias value must be on or off')
return
else
Value = lower(Value);
if strcmp(Value,'on')
biasflag = 1;
elseif strcmp(Value,'off'),
biasflag = 0;
else
fprintf('runica(): bias value must be on or off')
return
end
end
elseif strcmp(Keyword,'specgram') || strcmp(Keyword,'spec')
if ~exist('specgram') < 2 % if ~exist or defined workspace variable
fprintf(...
'runica(): MATLAB Sig. Proc. Toolbox function "specgram" not found.\n')
return
end
if ischar(Value)
fprintf('runica(): specgram argument must be a vector')
return
end
srate = Value(1);
if (srate < 0)
fprintf('runica(): specgram srate (%4.1f) must be >=0',srate)
return
end
if length(Value)>1
loHz = Value(2);
if (loHz < 0 || loHz > srate/2)
fprintf('runica(): specgram loHz must be >=0 and <= srate/2 (%4.1f)',srate/2)
return
end
else
loHz = 0; % default
end
if length(Value)>2
hiHz = Value(3);
if (hiHz < loHz || hiHz > srate/2)
fprintf('runica(): specgram hiHz must be >=loHz (%4.1f) and <= srate/2 (%4.1f)',loHz,srate/2)
return
end
else
hiHz = srate/2; % default
end
if length(Value)>3
Hzframes = Value(5);
if (Hzframes<0 || Hzframes > size(data,2))
fprintf('runica(): specgram frames must be >=0 and <= data length (%d)',size(data,2))
return
end
else
Hzframes = size(data,2); % default
end
if length(Value)>4
Hzwinlen = Value(4);
if rem(Hzframes,Hzwinlen) % if winlen doesn't divide frames
fprintf('runica(): specgram Hzinc must divide frames (%d)',Hzframes)
return
end
else
Hzwinlen = Hzframes; % default
end
Specgramflag = 1; % set flag to perform specgram()
elseif strcmp(Keyword,'extended') || strcmp(Keyword,'extend')
if ischar(Value)
fprintf('runica(): extended value must be an integer (+/-)')
return
else
extended = 1; % turn on extended-ICA
extblocks = fix(Value); % number of blocks per kurt() compute
if extblocks < 0
nsub = -1*fix(extblocks); % fix this many sub-Gauss comps
elseif ~extblocks,
extended = 0; % turn extended-ICA off
elseif kurtsize>frames, % length of kurtosis calculation
kurtsize = frames;
if kurtsize < MIN_KURTSIZE
fprintf(...
'runica() warning: kurtosis values inexact for << %d points.\n',...
MIN_KURTSIZE);
end
end
end
elseif strcmp(Keyword,'verbose')
if ~ischar(Value)
fprintf('runica(): verbose flag value must be on or off')
return
elseif strcmp(Value,'on'),
verbose = 1;
elseif strcmp(Value,'off'),
verbose = 0;
else
fprintf('runica(): verbose flag value must be on or off')
return
end
else
fprintf('runica(): unknown flag')
return
end
end
%
%%%%%%%%%%%%%%%%%%%%%%%% Initialize weights, etc. %%%%%%%%%%%%%%%%%%%%%%%%
%
if ~annealstep,
if ~extended,
annealstep = DEFAULT_ANNEALSTEP; % defaults defined above
else
annealstep = DEFAULT_EXTANNEAL; % defaults defined above
end
end % else use annealstep from commandline
if ~annealdeg,
annealdeg = DEFAULT_ANNEALDEG - momentum*90; % heuristic
if annealdeg < 0,
annealdeg = 0;
end
end
if ncomps > chans || ncomps < 1
fprintf('runica(): number of components must be 1 to %d.\n',chans);
return
end
if weights ~= 0, % initialize weights
% starting weights are being passed to runica() from the commandline
if verbose,
fprintf('Using starting weight matrix named in argument list ...\n')
end
if chans>ncomps && weights ~=0,
[r,c]=size(weights);
if r~=ncomps || c~=chans,
fprintf(...
'runica(): weight matrix must have %d rows, %d columns.\n', ...
chans,ncomps);
return;
end
end
end
%
%%%%%%%%%%%%%%%%%%%%% Check keyword values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if frames<chans,
fprintf('runica(): data length (%d) < data channels (%d)!\n',frames,chans)
return
elseif block < 1,
fprintf('runica(): block size %d too small!\n',block)
return
elseif block > frames,
fprintf('runica(): block size exceeds data length!\n');
return
elseif floor(epochs) ~= epochs,
fprintf('runica(): data length is not a multiple of the epoch length!\n');
return
elseif nsub > ncomps
fprintf('runica(): there can be at most %d sub-Gaussian components!\n',ncomps);
return
end
%
% adjust nochange if necessary
%
if isnan(nochange)
if ncomps > 32
nochange = 1E-7;
nochangeupdated = 1; % for fprinting purposes
else
nochangeupdated = 1; % for fprinting purposes
nochange = DEFAULT_STOP;
end
else
nochangeupdated = 0;
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Process the data %%%%%%%%%%%%%%%%%%%%%%%%%%
%
if verbose,
fprintf( ...
'\nInput data size [%d,%d] = %d channels, %d frames/n', ...
chans,frames,chans,frames);
if strcmp(pcaflag,'on')
fprintf('After PCA dimension reduction,\n finding ');
else
fprintf('Finding ');
end
if ~extended
fprintf('%d ICA components using logistic ICA.\n',ncomps);
else % if extended
fprintf('%d ICA components using extended ICA.\n',ncomps);
if extblocks > 0
fprintf(...
'Kurtosis will be calculated initially every %d blocks using %d data points.\n',...
extblocks, kurtsize);
else
fprintf(...
'Kurtosis will not be calculated. Exactly %d sub-Gaussian components assumed.\n',...
nsub);
end
end
fprintf('Decomposing %d frames per ICA weight ((%d)^2 = %d weights, %d frames)\n',...
floor(frames/ncomps.^2),ncomps.^2,frames);
fprintf('Initial learning rate will be %g, block size %d.\n',...
lrate,block);
if momentum>0,
fprintf('Momentum will be %g.\n',momentum);
end
fprintf( ...
'Learning rate will be multiplied by %g whenever angledelta >= %g deg.\n', ...
annealstep,annealdeg);
if nochangeupdated
fprintf('More than 32 channels: default stopping weight change 1E-7\n');
end
fprintf('Training will end when wchange < %g or after %d steps.\n', ...
nochange,maxsteps);
if biasflag,
fprintf('Online bias adjustment will be used.\n');
else
fprintf('Online bias adjustment will not be used.\n');
end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%% Remove overall row means %%%%%%%%%%%%%%%%%%%%%%%%
%
if verbose,
fprintf('Removing mean of each channel ...\n');
end
data = data - mean(data')'*ones(1,frames); % subtract row means
if verbose,
fprintf('Final training data range: %g to %g\n', ...
min(min(data)),max(max(data)));
end
%
%%%%%%%%%%%%%%%%%%% Perform PCA reduction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if strcmp(pcaflag,'on')
fprintf('Reducing the data to %d principal dimensions...\n',ncomps);
[eigenvectors,eigenvalues,data] = pcsquash(data,ncomps);
% make data its projection onto the ncomps-dim principal subspace
end
%
%%%%%%%%%%%%%%%%%%% Perform specgram transformation %%%%%%%%%%%%%%%%%%%%%%%
%
if exist('Specgramflag') == 1
% [P F T] = SPECGRAM(A,NFFT,Fs,WINDOW,NOVERLAP) % MATLAB Sig Proc Toolbox
% Hzwinlen = fix(srate/Hzinc); % CHANGED FROM THIS 12/18/00 -sm
Hzfftlen = 2^(ceil(log(Hzwinlen)/log(2))); % make FFT length next higher 2^k
Hzoverlap = 0; % use sequential windows
%
% Get freqs and times from 1st channel analysis
%
[tmp,freqs,tms] = specgram(data(1,:),Hzfftlen,srate,Hzwinlen,Hzoverlap);
fs = find(freqs>=loHz & freqs <= hiHz);
if isempty(fs)
fprintf('runica(): specified frequency range too narrow!\n');
return
end
specdata = reshape(tmp(fs,:),1,length(fs)*size(tmp,2));
specdata = [real(specdata) imag(specdata)];
% fprintf(' size(fs) = %d,%d\n',size(fs,1),size(fs,2));
% fprintf(' size(tmp) = %d,%d\n',size(tmp,1),size(tmp,2));
%
% Loop through remaining channels
%
for ch=2:chans
[tmp] = specgram(data(ch,:),Hzwinlen,srate,Hzwinlen,Hzoverlap);
tmp = reshape((tmp(fs,:)),1,length(fs)*size(tmp,2));
specdata = [specdata;[real(tmp) imag(tmp)]]; % channels are rows
end
%
% Print specgram confirmation and details
%
fprintf(...
'Converted data to %d channels by %d=2*%dx%d points spectrogram data.\n',...
chans,2*length(fs)*length(tms),length(fs),length(tms));
if length(fs) > 1
fprintf(...
' Low Hz %g, high Hz %g, Hz incr %g, window length %d\n',freqs(fs(1)),freqs(fs(end)),freqs(fs(2))-freqs(fs(1)),Hzwinlen);
else
fprintf(...
' Low Hz %g, high Hz %g, window length %d\n',freqs(fs(1)),freqs(fs(end)),Hzwinlen);
end
%
% Replace data with specdata
%
data = specdata;
datalength=size(data,2);
end
%
%%%%%%%%%%%%%%%%%%% Perform sphering %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if strcmp(sphering,'on'), %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if verbose,
fprintf('Computing the sphering matrix...\n');
end
sphere = 2.0*inv(sqrtm(cov(data'))); % find the "sphering" matrix = spher()
if ~weights,
if verbose,
fprintf('Starting weights are the identity matrix ...\n');
end
weights = eye(ncomps,chans); % begin with the identity matrix
else % weights given on commandline
if verbose,
fprintf('Using starting weights named on commandline ...\n');
end
end
if verbose,
fprintf('Sphering the data ...\n');
end
data = sphere*data; % actually decorrelate the electrode signals
elseif strcmp(sphering,'off') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~weights
if verbose,
fprintf('Using the sphering matrix as the starting weight matrix ...\n');
fprintf('Returning the identity matrix in variable "sphere" ...\n');
end
sphere = 2.0*inv(sqrtm(cov(data'))); % find the "sphering" matrix = spher()
weights = eye(ncomps,chans)*sphere; % begin with the identity matrix
sphere = eye(chans); % return the identity matrix
else % weights ~= 0
if verbose,
fprintf('Using starting weights named on commandline ...\n');
fprintf('Returning the identity matrix in variable "sphere" ...\n');
end
sphere = eye(chans); % return the identity matrix
end
elseif strcmp(sphering,'none')
sphere = eye(chans); % return the identity matrix
if ~weights
if verbose,
fprintf('Starting weights are the identity matrix ...\n');
fprintf('Returning the identity matrix in variable "sphere" ...\n');
end
weights = eye(ncomps,chans); % begin with the identity matrix
else % weights ~= 0
if verbose,
fprintf('Using starting weights named on commandline ...\n');
fprintf('Returning the identity matrix in variable "sphere" ...\n');
end
end
sphere = eye(chans,chans);
if verbose,
fprintf('Returned variable "sphere" will be the identity matrix.\n');
end
end
%
%%%%%%%%%%%%%%%%%%%%%%%% Initialize ICA training %%%%%%%%%%%%%%%%%%%%%%%%%
%
lastt=fix((datalength/block-1)*block+1);
BI=block*eye(ncomps,ncomps);
delta=zeros(1,chans*ncomps);
changes = [];
degconst = 180./pi;
startweights = weights;
prevweights = startweights;
oldweights = startweights;
prevwtchange = zeros(chans,ncomps);
oldwtchange = zeros(chans,ncomps);
lrates = zeros(1,maxsteps);
onesrow = ones(1,block);
bias = zeros(ncomps,1);
signs = ones(1,ncomps); % initialize signs to nsub -1, rest +1
for k=1:nsub
signs(k) = -1;
end
if extended && extblocks < 0 && verbose,
fprintf('Fixed extended-ICA sign assignments: ');
for k=1:ncomps
fprintf('%d ',signs(k));
end; fprintf('\n');
end
signs = diag(signs); % make a diagonal matrix
oldsigns = zeros(size(signs));;
signcount = 0; % counter for same-signs
signcounts = [];
urextblocks = extblocks; % original value, for resets
old_kk = zeros(1,ncomps); % for kurtosis momentum
%
%%%%%%%% ICA training loop using the logistic sigmoid %%%%%%%%%%%%%%%%%%%
%
if verbose,
fprintf('Beginning ICA training ...');
if extended,
fprintf(' first training step may be slow ...\n');
else
fprintf('\n');
end
end
step=0;
laststep=0;
blockno = 1; % running block counter for kurtosis interrupts
logstep = 1; % iterator over log likelihood record
rand('state',sum(100*clock)); % set the random number generator state to
cost_step = 1; % record cost every cost_step iterations
% a position dependent on the system clock
while step < maxsteps, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
permute=randperm(datalength); % shuffle data order at each step
loglik(logstep) = 0;
for t=1:block:lastt, %%%%%%%%% ICA Training Block %%%%%%%%%%%%%%%%%%%
pause(0);
if ~isempty(get(0, 'currentfigure')) && strcmp(get(gcf, 'tag'), 'stop')
close; error('USER ABORT');
end
if biasflag
u=weights*data(:,permute(t:t+block-1)) + bias*onesrow;
else
u=weights*data(:,permute(t:t+block-1));
end
if ~extended
%%%%%%%%%%%%%%%%%%% Logistic ICA weight update %%%%%%%%%%%%%%%%%%%
y=1./(1+exp(-u)); %
weights = weights + lrate*(BI+(1-2*y)*u')*weights; %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else % Tanh extended-ICA weight update
%%%%%%%%%%%%%%%%%%% Extended-ICA weight update %%%%%%%%%%%%%%%%%%%
y=tanh(u); %
weights = weights + lrate*(BI-signs*y*u'-u*u')*weights; %
%%%%%%%%% Calculate log likelihood given our model %%%%%%%%%
if mod(step,cost_step) == 0
subgcomp = find(diag(signs) == -1);
supergcomp = find(diag(signs) == 1);
loglik(logstep) = loglik(logstep) + sum(sum(log(exp(-(1/2)*(u(subgcomp,:)-1).^2) + exp(-(1/2)*(u(subgcomp,:)+1).^2))));
loglik(logstep) = loglik(logstep) + sum(sum(-0.5*u(supergcomp,:).^2 - 2*log(cosh(u(supergcomp,:)))));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
if biasflag
if ~extended
%%%%%%%%%%%%%%%%%%%%%%%% Logistic ICA bias %%%%%%%%%%%%%%%%%%%%%%%
bias = bias + lrate*sum((1-2*y)')'; % for logistic nonlin. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else % extended
%%%%%%%%%%%%%%%%%%% Extended-ICA bias %%%%%%%%%%%%%%%%%%%%%%%%%%%%
bias = bias + lrate*sum((-2*y)')'; % for tanh() nonlin. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
if momentum > 0 %%%%%%%%% Add momentum %%%%%%%%%%%%%%%%%%%%%%%%%%%%
weights = weights + momentum*prevwtchange;
prevwtchange = weights-prevweights;
prevweights = weights;
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if max(max(abs(weights))) > MAX_WEIGHT
wts_blowup = 1;
change = nochange;
end
if extended && ~wts_blowup
%
%%%%%%%%%%% Extended-ICA kurtosis estimation %%%%%%%%%%%%%%%%%%%%%
%
if extblocks > 0 && rem(blockno,extblocks) == 0,
% recompute signs vector using kurtosis
if kurtsize < frames % 12-22-99 rand() size suggestion by M. Spratling
rp = fix(rand(1,kurtsize)*datalength); % pick random subset
% Account for the possibility of a 0 generation by rand
ou = find(rp == 0);
while ~isempty(ou) % 1-11-00 suggestion by J. Foucher
rp(ou) = fix(rand(1,length(ou))*datalength);
ou = find(rp == 0);
end
partact=weights*data(:,rp(1:kurtsize));
else % for small data sets,
partact=weights*data; % use whole data
end
m2=mean(partact'.^2).^2;
m4= mean(partact'.^4);
kk= (m4./m2)-3.0; % kurtosis estimates
if extmomentum
kk = extmomentum*old_kk + (1.0-extmomentum)*kk; % use momentum
old_kk = kk;
end
signs=diag(sign(kk+signsbias)); % pick component signs
if signs == oldsigns,
signcount = signcount+1;
else
signcount = 0;
end
oldsigns = signs;
signcounts = [signcounts signcount];
if signcount >= SIGNCOUNT_THRESHOLD,
extblocks = fix(extblocks * SIGNCOUNT_STEP);% make kurt() estimation
signcount = 0; % less frequent if sign
end % is not changing
end % extblocks > 0 & . . .
end % if extended %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
blockno = blockno + 1;
if wts_blowup
break
end
end % training block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
loglik(logstep) = loglik(logstep) + log(abs(det(weights)));
logstep = logstep + 1;
if ~wts_blowup
oldwtchange = weights-oldweights;
step=step+1;
%
%%%%%%% Compute and print weight and update angle changes %%%%%%%%%
%
lrates(1,step) = lrate;
angledelta=0.;
delta=reshape(oldwtchange,1,chans*ncomps);
change=delta*delta';
end
%
%%%%%%%%%%%%%%%%%%%%%% Restart if weights blow up %%%%%%%%%%%%%%%%%%%%
%
if wts_blowup || isnan(change)|isinf(change), % if weights blow up,
fprintf('');
step = 0; % start again
change = nochange;
wts_blowup = 0; % re-initialize variables
blockno = 1;
lrate = lrate*DEFAULT_RESTART_FAC; % with lower learning rate
weights = startweights; % and original weight matrix
oldweights = startweights;
change = nochange;
oldwtchange = zeros(chans,ncomps);
delta=zeros(1,chans*ncomps);
olddelta = delta;
extblocks = urextblocks;
prevweights = startweights;
prevwtchange = zeros(chans,ncomps);
lrates = zeros(1,maxsteps);
bias = zeros(ncomps,1);
if extended
signs = ones(1,ncomps); % initialize signs to nsub -1, rest +1
for k=1:nsub
signs(k) = -1;
end
signs = diag(signs); % make a diagonal matrix
oldsigns = zeros(size(signs));;
end
if lrate> MIN_LRATE
r = rank(data);
if r<ncomps
fprintf('Data has rank %d. Cannot compute %d components.\n',...
r,ncomps);
return
else
fprintf(...
'Lowering learning rate to %g and starting again.\n',lrate);
end
else
fprintf( ...
'runica(): QUITTING - weight matrix may not be invertible!\n');
return;
end
else % if weights in bounds
%
%%%%%%%%%%%%% Print weight update information %%%%%%%%%%%%%%%%%%%%%%
%
if step> 2
angledelta=acos((delta*olddelta')/sqrt(change*oldchange));
end
if verbose,
places = -floor(log10(nochange));
if step > 2,
if ~extended,
ps = sprintf('step %d - lrate %5f, wchange %%%d.%df, angledelta %4.1f deg\n', ...
step, lrate, places+1,places, degconst*angledelta);
else
ps = sprintf('step %d - lrate %5f, wchange %%%d.%df, angledelta %4.1f deg, %d subgauss\n',...
step, lrate, degconst*angledelta,...
places+1,places, (ncomps-sum(diag(signs)))/2);
end
elseif ~extended
ps = sprintf('step %d - lrate %5f, wchange %%%d.%df\n',...
step, lrate, places+1,places );
else
ps = sprintf('step %5d - lrate %5f, wchange %%%d.%df, %d subgauss\n',...
step, lrate, places+1,places, (ncomps-sum(diag(signs)))/2);
end % step > 2
fprintf('step %d - lrate %5f, wchange %8.8f, angledelta %5.1f deg, loglik %6.2f, nsub = %d\n', ...
step, lrate, change, degconst*angledelta, loglik(step), sum(diag(signs)==-1));
% fprintf(ps,change); % <---- BUG !!!!
end; % if verbose
%
%%%%%%%%%%%%%%%%%%%% Save current values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
changes = [changes change];
oldweights = weights;
%
%%%%%%%%%%%%%%%%%%%% Anneal learning rate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if degconst*angledelta > annealdeg,
lrate = lrate*annealstep; % anneal learning rate
olddelta = delta; % accumulate angledelta until
oldchange = change; % annealdeg is reached
elseif step == 1 % on first step only
olddelta = delta; % initialize
oldchange = change;
end
%
%%%%%%%%%%%%%%%%%%%% Apply stopping rule %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if step >2 && change < nochange, % apply stopping rule
laststep=step;
step=maxsteps; % stop when weights stabilize
elseif change > DEFAULT_BLOWUP, % if weights blow up,
lrate=lrate*DEFAULT_BLOWUP_FAC; % keep trying
end; % with a smaller learning rate
end; % end if weights in bounds
end; % end training %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~laststep
laststep = step;
end
lrates = lrates(1,1:laststep); % truncate lrate history vector
%
%%%%%%%%%%%%%% Orient components towards max positive activation %%%%%%
%
if strcmp(posactflag,'on')
[activations,winvout,weights] = posact(data,weights);
% changes signs of activations and weights to make activations
% net rms-positive
else
activations = weights*data;
end
%
%%%%%%%%%%%%%% If pcaflag, compose PCA and ICA matrices %%%%%%%%%%%%%%%
%
if strcmp(pcaflag,'on')
fprintf('Composing the eigenvector, weights, and sphere matrices\n');
fprintf(' into a single rectangular weights matrix; sphere=eye(%d)\n'...
,chans);
weights= weights*sphere*eigenvectors(:,1:ncomps)';
sphere = eye(urchans);
end
%
%%%%%% Sort components in descending order of max projected variance %%%%
%
if verbose,
fprintf(...
'Sorting components in descending order of mean projected variance ...\n');
end
%
%%%%%%%%%%%%%%%%%%%% Find mean variances %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
meanvar = zeros(ncomps,1); % size of the projections
if ncomps == urchans % if weights are square . . .
winv = inv(weights*sphere);
else
fprintf('Using pseudo-inverse of weight matrix to rank order component projections.\n');
winv = pinv(weights*sphere);
end
for s=1:ncomps
if verbose,
fprintf('%d ',s); % construct single-component data matrix
end
% project to scalp, then add row means
compproj = winv(:,s)*activations(s,:);
meanvar(s) = mean(sum(compproj.*compproj)/(size(compproj,1)-1));
% compute mean variance
end % at all scalp channels
if verbose,
fprintf('\n');
end
%
%%%%%%%%%%%%%% Sort components by mean variance %%%%%%%%%%%%%%%%%%%%%%%%
%
[sortvar, windex] = sort(meanvar);
windex = windex(ncomps:-1:1); % order large to small
meanvar = meanvar(windex);
%
%%%%%%%%%%%%%%%%%%%%% Filter data using final weights %%%%%%%%%%%%%%%%%%
%
if nargout>6, % if activations are to be returned
if verbose,
fprintf('Permuting the activation wave forms ...\n');
end
activations = activations(windex,:);
else
clear activations
end
weights = weights(windex,:);% reorder the weight matrix
bias = bias(windex); % reorder them
signs = diag(signs); % vectorize the signs matrix
signs = signs(windex); % reorder them
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
return
%
%%%%%%%%%%%%%%%%%% return nonlinearly-transformed data %%%%%%%%%%%%%%%%
%
if nargout > 7
u=weights*data + bias*ones(1,frames);
y = zeros(size(u));
for c=1:chans
for f=1:frames
y(c,f) = 1/(1+exp(-u(c,f)));
end
end
end