[422372]: / functions / sigprocfunc / movav.m

Download this file

281 lines (258 with data), 8.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
% MOVAV - Perform a moving average of data indexed by xvals.
% Supports use of a moving non-rectangular window.
% Can be used to resample a data matrix to any size
% (see xadv NOTE below) and to regularize sampling of
% irregularly sampled data.
% Usage:
% >> [outdata,outx] = movav(data,xvals,xwidth,xadv,firstx,lastx,xwin,nonorm);
%
% Input:
% data = input data (chans,frames)
%
% Optional inputs:
% xvals = increasing x-values for data frames (columnsa). The default
% [1:frames] is fastest {def|[]|0 -> 1:frames}
% xwidth = smoothing-window width in xvals units {def|0->(hix-lox)/4}
% xadv = window step size in xvals units. NOTE: To reduce yyy frames
% to about xxx, xadv needs to be near yyy/xxx {default|0 -> 1}
% firstx = low xval of first averaging window {def|[] -> min xvals}
% lastx = high xval of last averaging window {def|[] -> max xvals}
% xwin = vector of window values {def|0 -> ONES = square window}
% May be long. NOTE: linear interp. is NOT used between values.
% Example: gauss(1001,2) -> [0.018 ... 1.0 ... 0.018]
% nonorm = [1|0] If non-zero, do not normalize the moving sum. If
% all y values are 1s. this creates a moving histogram.
% Ex: >> [oy,ox] = movav(ones(size(x)),x,xwd,xadv,[],[],0,1);
% returns a moving histogram of xvals {default: 0}
% Outputs:
% outdata = smoothed output data (chans,outframes)
% outx = xval midpoints of successive output windows
%
% Author: Scott Makeig, SCCN/INC/UCSD, La Jolla, 10-25-97
% Copyright (C) 10-25-97 Scott Makeig, SCCN/INC/UCSD, scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 3-20-98 fixed bug in multi-channel windowed averaging -sm
% 6-10-98 changed MEAN and SUM to NANMEAN and NANSUM -sm
% 2-16-99 tested for stat toolbox functions NANMEAN and NANSUM -sm
% 9-03-01 fixed GAUSS example -sm
% 01-25-02 reformated help & licenses -ad
function [outdata,outx] = movav(data,xvals,xwidth,xadv,firstx,lastx,xwin,nonorm)
MAXPRINT = 1; % max outframe numbers to print on tty
NEARZERO = 1e-22; %
DEFAULT_XADV = 1; % default xvals window step advance
verbose = 0; % If 1, output process info
nanexist = 0;
if nargin<1
help movav
return
else
[chans,frames]=size(data);
end
if chans>1 && frames == 1,
data = data'; % make row vector
tmp = chans;
chans = frames;
frames = tmp;
end
if frames < 4
error('data are too short');
return
end
flag_fastave = 0;
if nargin<2 || isempty(xvals) || (numel(xvals)==1 && xvals == 0)
xvals = 1:frames; % flag default xvals
flag_fastave = 0; % TURNED OFF THIS FEATURE - LEADS TO ?? BUG AT ABOUT 287
end % -sm 3/6/07
if size(xvals,1)>1 && size(xvals,2)>1
error('xvals must be a vector');
end
xvals = xvals(:)'; % make xvals a row vector
if frames ~= length(xvals)
error('lengths of xvals and data not equal');
end
if nargin < 8 || isempty(nonorm)
nonorm = 0; % default -> return moving mean
end
if abs(nonorm) > NEARZERO
nonorm = 1;
end
if nargin < 7 || isempty(xwin)
xwin = 0;
end
if nargin < 6 || isempty(lastx)
lastx = [];
end
if isempty(lastx),
if flag_fastave
lastx = frames;
else
lastx = max(xvals);
end
end
if nargin<5 || isempty(firstx)
firstx = [];
end
if isempty(firstx),
if flag_fastave
firstx = 1;
else
firstx = min(xvals);
end
end
if nargin<4 || isempty(xadv)
xadv = 0;
end
if isempty(xadv) || xadv == 0,
xadv = DEFAULT_XADV;
end
if nargin<3 || isempty(xwidth) || xwidth==0
xwidth = (lastx-firstx)/4; % DEFAULT XWIDTH
end
wlen = 1; % default;
if flag_fastave==0
if length(xwin)==1 && (xwin~=0) && (xwin~=1), % should be a vector or 0
error('xwin not vector or 0');
elseif size(xwin,1)>1 && size(xwin,2)>1 % not a matrix
error('xwin cannot be a matrix');
end
if size(xwin,1)>1
xwin = xwin'; % make row vector
end
if xwin~=0
wlen = length(xwin);
end
end
%outframes = floor(0.99999+((lastx-firstx+xadv)-xwidth)/xadv);
outframes = floor(((lastx-firstx+xadv+1)-xwidth)/xadv);
if verbose
fprintf('movav() will output %d frames.\n',outframes);
end
if outframes < 1,
outframes = 1;
end
outdata = zeros(chans,outframes);
outx = zeros(1,outframes);
outxval = firstx+xwidth/2;
%
%%%%%%%%%%%%%%%%%%%%%% Print header %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if verbose,
fprintf('Performing moving averaging:\n')
fprintf('Output will be %d chans by %d frames',chans,outframes);
if wlen>1,
fprintf(' using the specified width-%d window\n',wlen);
else
fprintf(' using a width-%d square window\n',xwidth);
end
fprintf(' and a window advance of %g\n',xadv);
end
%
%%%%%%%%%%%%%%%%%%% Perform averaging %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
lox = firstx;
i = 0; % flag_fastave default
for f=1:outframes
hix = lox+xwidth;
outx(1,f)=outxval;
outxval = outxval + xadv;
if flag_fastave == 0
i = find(xvals>=lox & xvals < hix);
end
if length(i)==0,
if f>1,
outdata(:,f) = outdata(:,f-1); % If no data, replicate
else
outdata(:,f) = zeros(chans,1); % or else output zeros
end
elseif length(xwin)==1,
if flag_fastave > 0
outdata(:,f) = nan_mean(data(:,round(lox):round(hix))')';
nix = length([round(lox):round(hix)]);
else
outdata(:,f) = nan_mean(data(:,i)')'; % Else average
nix = length(i);
end
if nonorm && nix % undo division by number of elements summed
outdata(:,f) = outdata(:,f)*nix;
end
%
%%%%%%%%%%%%%%%%% Windowed averaging %%%%%%%%%%%%%%%%%%%%%%%%%%%
%
else % length(xwin) > 1
wadv=(hix-lox)/wlen;
ix = floor((xvals(i)-lox)/wadv)+1; % AG fix 3/6/07
if length(xwin)>1
sumx = sum(xwin(ix));
else
sumx=1;
end
% AG fix 3/6/7
outdata(:,f) = nan_sum((((ones(chans,1)*xwin(ix)).*data(:,i)))')';
if abs(sumx) > NEARZERO && nonorm == 0
outdata(:,f) = outdata(:,f)/sumx;
end
end
lox = lox+xadv;
if (outframes<MAXPRINT)
fprintf('%d ',f);
end
end
if verbose,
fprintf('\n');
end
%
%%%%%%%%%%%%%%%%%%%%%%% function NAN_MEAN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% NAN_MEAN - take the column means of a matrix, ignoring NaN values
%
function out = nan_mean(in)
nans = find(isnan(in));
in(nans) = 0;
sums = sum(in);
nonnans = ones(size(in));
nonnans(nans) = 0;
nonnans = sum(nonnans,1);
nononnans = find(nonnans==0);
nonnans(nononnans) = 1;
out = sum(in,1)./nonnans;
out(nononnans) = NaN;
%
%%%%%%%%%%%%%%%%%%%%%%% function NAN_SUM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% NAN_SUM - take the column sums of a matrix, ignoring NaN values
%
function out = nan_sum(in)
nans = find(isnan(in));
in(nans) = 0;
out = sum(in,1);
nonnans = ones(size(in));
nonnans(nans) = 0;
nonnans = sum(nonnans,1);
nononnans = find(nonnans==0);
out(nononnans) = NaN;