[422372]: / functions / sigprocfunc / dipoledensity.m

Download this file

490 lines (458 with data), 21.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
% DIPOLEDENSITY - compute and optionally plot a measure of the 3-D spatial
% (in)homogeneity of a specified (large) set of 1- or 2-dipole
% component models, either as physical dipole density or as
% dipole-position entropy across subjects. In either case,
% take into account either all the dipoles, or only the nearest
% dipole from each of the subjects. If no output arguments,
% or if 'plot','on', paints a 3-D density|entropy brain image
% on slices of the Montreal Neurological Institute (MNI) mean
% MR brain image ('standard_BESA/avg152t1.mat'). Calls
% DIPPLOT,
% MRI3DPLOT, and Fieldtrip function FT_INSIDE_HEADMODEL.
% Usage:
% >> [dens3d mri] = dipoledensity( dipoles, 'key',val, ... );
%
% Inputs:
% dipoles - this may be either the same dipole structure given as input to
% the DIPPLOT function, a 3 by n array of dipole localization or
% a cell array containing arguments for the dipplot function. Note that
% the 'coordformat' option below defines the coordinate space for these
% dipoles (default is MNI). See help dipplot for more information.
%
% Optional 'key', val input pairs:
% 'mri' - [string or struct] mri file (matlab format or file format read
% by fcdc_read_mri). See dipplot.m help for more information.
% 'method' - ['alldistance'|'distance'|'entropy'|'relentropy'] method for
% computing density:
% 'alldistance' - {default} take into account the gaussian-weighted
% distances from each voxel to all the dipoles. See
% 'methodparam' (below) to specify a standard deviation
% (in mm) for the gaussian weight kernel.
% 'distance' - take into account only the distances to the nearest
% dipole for each subject. See 'methodparam' (below).
% 'entropy' - taking into account only the nearest dipole to each
% voxel for each subject. See 'methodparam' below.
% 'relentropy' - as in 'entropy,' but take into account all the
% dipoles for each subject.
% 'methodparam' - [number] for 'distance'|'alldistance' methods (see above), the
% standard deviation (in mm) of the 3-D gaussian smoothing kernel.
% For 'entropy'|'relentropy' methods, the number of closest dipoles
% to include {defaults: 20 mm | 20 dipoles }
% 'subsample' - [integer] subsampling of native MNI image {default: 2 -> 2x2x2}
% 'weight' - [(1,ncomps) array] for 'distance'|'alldistance' methods, the
% relative weight of each component dipole {default: ONES}
% 'coordformat' - ['mni'|'spherical'] coordinate format if dipole location or
% a structure is given as input. Default is 'mni'.
% 'subjind' - [(1,ncomps) array] subject index for each dipole model. If two
% dipoles are in one component model, give only one subject index.
% 'nsessions' - [integer] for 'alldistance' method, the number of sessions to
% divide the output values by, so that the returned measure is
% dipole density per session {default: 1}
% 'plot' - ['on'|'off'] force plotting dipole density|entropy
% {default: 'on' if no output arguments, else 'off'}
% 'dipplot' - ['on'|'off'] plot the dipplot image (used for converting
% coordinates (default is 'off')
% 'plotargs' - {cell array} plotting arguments for MRI3DPLOT function.
% 'volmesh_fname' - [string] precomputed mesh volume file name. If not
% given as input the function will recompute it (it can take from
% five to 20 minutes). By default this function save the volume file
% mesh into a file named volmesh_local.mat in the current
% folder.
% 'norm2JointProb' - ['on'|'off'] Use joint probability (i.e. sum of all
% voxel values == 1) instead of number of dipoles/cm^3.
% Should be used for group comparison. (default 'off')
%
% Outputs:
% dens3d - [3-D num array] density in dipoles per cubic centimeter. If output
% is returned, no plot is produced unless 'plot','on' is specified.
% mri - {MRI structure} used in MRI3DPLOT.
%
% Example:
% >> fakedipoles = (rand(3,10)-0.5)*80;
% >> [dens3d mri] = dipoledensity( fakedipoles, 'coordformat', 'mni');
% >> mri3dplot(dens3d,mri); % replot if no output is given above
% % function is called automatically
%
% ------------------------------------
% NOTES: to do multiple subject causal-weighted density map,
% (1) concatenate dipplot coord matrices for all subject
% (2) make g.subjind vector [ones(1,ncompsS1) 2*ones(1,ncompsS2) ... N*ones(1,ncompssN)]
% (3) concatenate normalized outflows for all subjects to form weight vector
% (4) call dipoledensity function with method = 'entropy' or 'relentropy'
% ------------------------------------
%
% See also:
% EEGLAB: DIPPLOT, MRI3DPLOT, Fieldtrip: FT_INSIDE_HEADMODEL
%
% Authors: Arnaud Delorme & Scott Makeig SCCN, INC, UCSD
% Modified by: Makoto Miyakoshi
% Ramon Martinez-Cancino
% Copyright (C) Arnaud Delorme & Scott Makeig, SCCN/INC/UCSD, 2003-
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [prob3d, mri] = dipoledensity(dipplotargs, varargin)
% TO DO: return in dipplot() the real 3-D location of dipoles (in posxyz)
% FIX the dimension order here
prob3d = []; mri = [];
if nargin < 1
help dipoledensity
return
end
g = finputcheck(varargin, { 'subjind' 'integer' [] [];
'method' 'string' { 'relentropy','entropy','distance','alldistance' } 'alldistance';
'methodparam' 'real' [] 20;
'weight' { 'real','cell' } [] [];
'smooth' 'real' [] 0;
'nsessions' 'integer' [] 1;
'subsample' 'integer' [] 2;
'plotargs' 'cell' [] {};
'plot' 'string' { 'on','off' } fastif(nargout == 0, 'on', 'off');
'dipplot' 'string' { 'on','off' } 'off';
'coordformat' 'string' { 'mni','spherical' } 'mni';
'normalization' 'string' { 'on','off' } 'on';
'volmesh_fname' 'string' [] 'volmesh_local.mat';
'mri' { 'struct','string' } [] '';
'norm2JointProb' 'string' { 'on','off' } 'off'});
if ischar(g), error(g); end
if ~strcmpi(g.method, 'alldistance') && isempty(g.subjind)
error('Subject indices are required for this method');
end
if ~iscell(g.weight), g.weight = { g.weight }; end
% plotting dipplot
% ----------------
if ~iscell(dipplotargs) % convert input
if ~isstruct(dipplotargs)
if size(dipplotargs,1) == 3, dipplotargs = dipplotargs';
elseif size(dipplotargs,2) ~= 3
error('If an array of dipoles is given as entry, there must be 3 columns or 3 rows for x y z');
end
model = [];
for idip = 1:length(dipplotargs)
model(idip).posxyz = dipplotargs(idip,:);
model(idip).momxyz = [1 0 0];
model(idip).rv = 0.5;
end
dipplotargs = model;
end
dipplotargs = { dipplotargs 'coordformat' g.coordformat };
else
dipplotargs = { dipplotargs{:} 'coordformat' g.coordformat };
end
struct = dipplot(dipplotargs{:}, 'plot', g.dipplot, 'density', 'off');
if nargout == 0
drawnow;
end
% retrieve coordinates in MNI space
% ---------------------------------
if 0 % deprecated
% find dipoles
% ------------
hmesh = findobj(gcf, 'tag', 'mesh');
if isempty(hmesh), error('Current figure must contain dipoles'); end
hh = [];
disp('Finding dipoles...');
dips = zeros(1,200);
for index = 1:1000
hh = [ hh(:); findobj(gcf, 'tag', ['dipole' int2str(index) ]) ];
dips(index) = length(findobj(gcf, 'tag', ['dipole' int2str(index) ]));
end
disp('Retrieving dipole positions ...');
count = 1;
for index = 1:length(hh)
tmp = get(hh(index), 'userdata');
if length(tmp) == 1
allx(count) = tmp.eleccoord(1,1);
ally(count) = tmp.eleccoord(1,2);
allz(count) = tmp.eleccoord(1,3);
alli(count) = index;
count = count + 1;
end
end
end
% check weights
% -------------
if ~isempty(g.weight{1})
if ~iscell(g.weight)
if length(g.weight) ~= length(struct)
error('There must be as many elements in the weight matrix as there are dipoles')
end
else
if length(g.weight{1}) ~= length(struct) || length(g.weight{1}) ~= length(g.weight{end})
error('There must be as many elements in the weight matrix as there are dipoles')
end
end
else
g.weight = { ones( 1, length(struct)) };
end
if ~isempty(g.subjind)
if length(g.subjind) ~= length(struct)
error('There must be as many element in the subject matrix as there are dipoles')
end
else
g.subjind = ones( 1, length(struct));
end
% decoding dipole locations
% -------------------------
disp('Retrieving dipole positions ...');
count = 1;
for index = 1:length(struct)
dips = size(struct(index).eleccoord,1);
for dip = 1:dips
allx(count) = struct(index).eleccoord(dip,1);
ally(count) = struct(index).eleccoord(dip,2);
allz(count) = struct(index).eleccoord(dip,3);
alli(count) = index;
allw1(count) = g.weight{1}( index)/dips;
allw2(count) = g.weight{end}(index)/dips;
alls(count) = g.subjind(index);
count = count + 1;
end
end
g.weight{1} = allw1;
g.weight{end} = allw2;
g.subjind = alls;
% read MRI file
% -------------
if isempty(g.mri) % default MRI file
dipfitdefs;
load('-mat', template_models(1).mrifile); % load mri variable
g.mri = mri;
end
if ischar(g.mri)
try
mri = load('-mat', g.mri);
mri = mri.mri;
catch
disp('Failed to read Matlab file. Attempt to read MRI file using function read_fcdc_mri');
try
warning off;
mri = read_fcdc_mri(g.mri);
mri.anatomy = round(gammacorrection( mri.anatomy, 0.8));
mri.anatomy = uint8(round(mri.anatomy/max(reshape(mri.anatomy, prod(mri.dim),1))*255));
% WARNING: if using double instead of int8, the scaling is different
% [-128 to 128 and 0 is not good]
% WARNING: the transform matrix is not 1, 1, 1 on the diagonal, some slices may be
% misplaced
warning on;
catch
error('Cannot load file using read_fcdc_mri');
end
end
g.mri = mri; % output the anatomic mri image
end
% reserve array for density
% -------------------------
prob3d = {zeros(ceil(g.mri.dim/g.subsample)) };
for i = 2:length(g.weight), prob3d{i} = prob3d{1}; end
% compute voxel size
% ------------------
point1 = g.mri.transform * [ 1 1 1 1 ]';
point2 = g.mri.transform * [ 2 2 2 1 ]';
voxvol = sum((point1(1:3)-point2(1:3)).^2)*g.subsample^3; % in mm
% compute global subject entropy if necessary
% -------------------------------------------
vals = unique_bc(g.subjind); % the unique subject indices
if strcmpi(g.method, 'relentropy') || strcmpi(g.method, 'entropy') %%%%% entropy %%%%%%%
newind = zeros(size(g.subjind));
for index = 1:length(vals) % foreach subject in the cluster
tmpind = find(g.subjind == vals(index)); % dipoles for the subject
totcount(index) = length(tmpind); % store the number of subject dipoles
newind(tmpind) = index; % put subject index into newind
end
g.subjind = newind;
gp = totcount/sum(totcount);
globent = -sum(gp.*log(gp));
end
% compute volume inside head mesh
% -------------------------------
dipfitdefs; % get the location of standard BEM volume file
tmp = load('-mat',DIPOLEDENSITY_STDBEM); % load MNI mesh
if ~exist(g.volmesh_fname)
% Checking for Fieldtrip
if exist('ft_electroderealign', 'file')~=2,error('dipoledensity: Fieldtrip toolbox is required'); end
disp('Computing volume within head mesh...');
[X Y Z] = meshgrid(g.mri.xgrid(1:g.subsample:end)+g.subsample/2, ...
g.mri.ygrid(1:g.subsample:end)+g.subsample/2, ...
g.mri.zgrid(1:g.subsample:end)+g.subsample/2);
[indX indY indZ ] = meshgrid(1:length(g.mri.xgrid(1:g.subsample:end)), ...
1:length(g.mri.ygrid(1:g.subsample:end)), ...
1:length(g.mri.zgrid(1:g.subsample:end)));
allpoints = [ X(:)' ; Y(:)' ; Z(:)' ];
allinds = [ indX(:)' ; indY(:)'; indZ(:)' ];
allpoints = g.mri.transform * [ allpoints ; ones(1, size(allpoints,2)) ];
allpoints(4,:) = [];
olddir = pwd;
tmppath = which('ft_electroderealign');
tmppath = fullfile(fileparts(tmppath), 'private');
cd(tmppath);
inside = ft_inside_headmodel(allpoints', tmp.vol);
Inside = find(inside); Outside = find(~inside);
cd(olddir);
disp('Done.');
if 0 % old code using Delaunay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
P = tmp.vol.bnd(1).pnt;
T = delaunayn(P); % recompute triangularization (the original one is not compatible
% with tsearchn) get coordinates of all points in the volume
% search for points inside or outside the volume (takes about 14 minutes!)
IO = tsearchn(P, T, allpoints');
Inside = find(isnan(IO));
Outside = find(~isnan(IO));
disp('Done.');
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
try
save('-mat', g.volmesh_fname, 'allpoints', 'allinds', 'Inside', 'Outside');
disp('Saving file containing inside/outide voxel indices...');
catch, end
else
disp('Loading file containing inside/outide voxel indices...');
load('-mat',g.volmesh_fname);
end
InsidePoints = allpoints(:, Inside);
InsideIndices = allinds(:, Inside);
% scan grid and compute entropy at each voxel
% -------------------------------------------
edges = [0.5:1:length(vals)+0.5];
if ~strcmpi(g.method, 'alldistance')
fprintf('Computing (of %d):', size(InsideIndices,2));
% entropy calculation: have to scan voxels
% ----------------------------------------
for i = 1:size(InsideIndices,2)
alldists = (InsidePoints(1,i) - allx).^2 ...
+ (InsidePoints(2,i) - ally).^2 ...
+ (InsidePoints(3,i) - allz).^2;
[tmpsort indsort] = sort(alldists); % sort dipoles by distance
tmpweights{1} = g.weight{1}( indsort);
tmpweights{end} = g.weight{end}(indsort);
if strcmpi(g.method, 'relentropy') || strcmpi(g.method, 'entropy') %%%%% entropy %%%%%%%
subjs = g.subjind(indsort(1:g.methodparam)); % get subject indices of closest dipoles
p = histc(subjs, edges);
if strcmpi(g.method, 'relentropy')
p = p(1:end-1)./totcount;
% this should be uniform if p conforms to global count for all subjects
end
p = p/sum(p);
p(find(p == 0)) = [];
for tmpi = 1:length(g.weight)
prob3d{1}(InsideIndices(1,i), InsideIndices(2,i), InsideIndices(3,i)) = -sum(p.*log(p));
end
else
% distance to each subject
ordsubjs = g.subjind(indsort);
for index = 1:length(vals) % for each subject
tmpind = find(ordsubjs == vals(index));
if strcmpi(g.method,'distance')
use_dipoles(index) = tmpind(1); % find their nearest dipole
end
end
for tmpi = 1:length(g.weight)
prob3d{tmpi}(InsideIndices(1,i), InsideIndices(2,i), InsideIndices(3,i)) = ...
sum(tmpweights{tmpi}(use_dipoles).*exp(-tmpsort(use_dipoles)/ ...
(2*g.methodparam^2))); % 3-D gaussian smooth
end
end
if mod(i,100) == 0, fprintf('%d ', i); end
end
else % 'alldistance'
% distance calculation: can scan dipoles instead of voxels (since linear)
% --------------------------------------------------------
%alldists = allx.^2 + ally.^2 + allz.^2;
%figure; hist(alldists); return; % look at distribution of distances
fprintf('Computing (of %d):', size(allx,2));
for tmpi=1:length(g.weight)
tmpprob{tmpi} = zeros(1, size(InsidePoints,2));
end
if length(g.weight) > 1, tmpprob2 = tmpprob; end
for i = 1:size(allx,2)
alldists = (InsidePoints(1,:) - allx(i)).^2 + ...
(InsidePoints(2,:) - ally(i)).^2 + ...
(InsidePoints(3,:) - allz(i)).^2;
% alldists = 1; % TM
for tmpi=1:length(g.weight)
tmpprob{tmpi} = tmpprob{tmpi} + g.weight{tmpi}(i)*exp(-alldists/(2*g.methodparam^2)); % 3-D gaussian smooth
if any(isinf(tmpprob{tmpi})), error('Infinite value in probability calculation'); end
end
if mod(i,50) == 0, fprintf('%d ', i); end
end
% copy values to 3-D mesh
% -----------------------
for i = 1:length(Inside)
pnts = allinds(:,Inside(i));
for tmpi = 1:length(g.weight)
prob3d{tmpi}(pnts(1), pnts(2), pnts(3)) = tmpprob{tmpi}(i);
end
end
end
fprintf('\n');
% normalize for points inside and outside the volume
% norm2JointProb is applied before plotting
% --------------------------------------------------
if strcmpi(g.method, 'alldistance') && strcmpi(g.normalization,'on')
for i =1:length(g.weight)
disp('Normalizing to dipole/mm^3');
if any(prob3d{i}(:)<0)
fprintf('WARNING: Some probabilities are negative, this will likely cause problems when normalizing probabilities.\n');
fprintf('It is highly recommended to turn normaliziation off by using ''normalization'' key to ''off''.\n');
end
totval = sum(prob3d{i}(:)); % total values in the head
totdip = size(allx,2); % number of dipoles
prob3d{i} = (prob3d{i}/totval*totdip/voxvol*1000)/g.nsessions; % time 1000 to get cubic centimeters
end
end
% resample matrix
% ----------------
if g.subsample ~= 1
for i =1:length(g.weight)
prob3d{i} = prob3d{i}/g.subsample;
newprob3d = zeros(g.mri.dim);
X = ceil(g.mri.xgrid/g.subsample);
Y = ceil(g.mri.ygrid/g.subsample);
Z = ceil(g.mri.zgrid/g.subsample);
for index = 1:size(newprob3d,3)
newprob3d(:,:,index) = prob3d{i}(X,Y,Z(index));
end
prob3d{i} = newprob3d;
end
end
% 3-D smoothing
% -------------
if g.smooth ~= 0
disp('Smoothing...');
for i =1:length(g.weight)
prob3d{i} = smooth3d(prob3d{i}, g.smooth);
end
end
% Perform normalization so that the total sum of joint prob == 1
if strcmpi(g.norm2JointProb, 'on')
prob3d{i} = prob3d{i}/sum(prob3d{i}(:));
end
% plotting
% --------
if strcmpi(g.plot, 'off')
close gcf;
else
mri3dplot( prob3d, g.mri, g.plotargs{:}); % plot the density using mri3dplot()
end
return;