[422372]: / functions / popfunc / eeg_laplac.m

Download this file

170 lines (151 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
% EEG_LAPLAC - gives the laplacian for the data contained in EEG
% for the values 1:stepl:end with electrodes position given by EEG.chanlocs.
% Step must be a number between 1 and length(EEG.data)
% The method used for computig the laplacian is the described by Perrin et al.
% 1989 using a spline interpolation between the electrodes. This function
% requires the functions G2 and GM_1 to be in the path or in the same dir.
% Usage:
% >> [laplac time] = eeg_laplac(EEG, step);
% >> laplac = eeg_laplac(EEG, step);
% Inputs:
% EEG - A EEG structure containing the EEG.data an the EEG.chanlocs
% step - The step for subsampling the data
%
% Outputs:
% laplac - A matrix containing the value of laplacian for the data
% time - Time spent in calculation
%
% See also: DEL2MAP
%
% Author: Juan Sebastian Gonzalez, DFI / Universidad de Chile
%
% Message from Jrgen Kayser, one of the main author of the CSD (Current
% Source Density) toolbox: "I do not find any differences between his Laplacian
% solution and our CSD transform (i.e., apart from the lack of a smoothing
% constant, the choice of the m constant, and the specific spherical locations
% assigned to any given electrode). Even more important would be a warning that
% the flexibility constant m is fixed at 3 (2 = max flexible, 3 = medium,
% 4=medium rigid, 5+=increasingly less flexible splines), which is a debatable
% choice and not recommended by us. The choice of the m constant (and the
% regulization or smoothing constant) should depend on the objective of the
% study."
% Copyright (C)2006 Juan Sebastian Gonzalez, DFI / Universidad de Chile
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [laplac, time] = eeg_laplac(EEG, paso)
if nargin < 2
help eeg_laplac;
return;
end
tic
n = length(EEG.data(:,1));
a = zeros(n,3);
g = zeros(n);
for i=1:n
a(i,1)=EEG.chanlocs(i).sph_phi;
a(i,2)=EEG.chanlocs(i).sph_theta;
end
V = zeros(1,n+1);
aux = a*pi/180;
matriz_g = zeros(n+1);
for i=1:n
matriz_g(i,1:n) = g2(aux(i,1)*ones(n,1),aux(i,2)*ones(n,1),aux(:,1),aux(:,2));
g(i,:) = gm_1(aux(i,1)*ones(n,1),aux(i,2)*ones(n,1),aux(:,1),aux(:,2));
end
matriz_g(:,n+1) = 1;
matriz_g(n+1,:) = 1;
inv_m = inv(matriz_g);
k = 1;
largo = length(EEG.data(1,:));
laplac = zeros(n,round((largo-1)/paso));
for j=1:paso:largo
% ciclo para sacar los anglos phi y theta en grados
for i=1:n
V(i) = EEG.data(i,j);
end
% calculo la constante a partir de la matriz invertida
constant = inv_m*V';
% una vez que tengo las constantes, calculo el laplaciano segun la formula
% de perrin 89 corregida
for i=1:n
laplac(i,k) = g(i,:)*constant(1:n);
end
k = k + 1;
end
time = toc;
%---------------------------------------------------------------------
% internal functions g2 gm_1
function valor=g2(r1,r2,r3,r4)
%g entrega la sumatoria hasta 7 con m=3 de la ec. (2) de la technical note del
%Electrical Geodesics, salvo que esta esta bien
x=cos(r1).*cos(r2).*cos(r3).*cos(r4) + ...
cos(r1).*sin(r2).*cos(r3).*sin(r4) + ...
sin(r1).*sin(r3);
L = length(x);
for i=1:L
if x(i) > 1
x(i) = 1;
elseif x(i) < -1
x(i) = -1;
end
end
P = zeros(25,length(x));
for n=1:25
aux = legendre(n,x); % calculo los polinomios de legendre de orden n %
P(n,:) = aux(1,:); % tomo el que me sirve %
end
n = 1:25;
for i=1:25
aux2(i,:) = ((2*n(i)+1)./(n(i).*(n(i)+1)).^3)*ones(1,L);
end
valor = 1/4/pi*sum(aux2.*P);
%-----------------------------------------------------
function valor=gm_1(r1,r2,r3,r4)
%g entrega la sumatoria hasta 7 con m=3 de la ec. (2) de la technical note del
%Electrical Geodesics
x=cos(r1).*cos(r2).*cos(r3).*cos(r4) + ...
cos(r1).*sin(r2).*cos(r3).*sin(r4) + ...
sin(r1).*sin(r3);
L = length(x);
for i=1:L
if x(i) > 1
x(i) = 1;
elseif x(i) < -1
x(i) = -1;
end
end
P = zeros(25,length(x));
for n=1:25
aux=legendre(n,x);
P(n,:)=aux(1,:);
end
n=1:25;
%el problema es calcular esto para cada columna...sin hacer un for
%respuesta, hacer for de 7 vueltas jajaj
for i=1:25
aux2(i,:)=(2*n(i)+1)/(n(i)*(n(i)+1))^2*ones(1,L);
end
valor=1/4/pi*sum(aux2.*P);