[422372]: / functions / miscfunc / testica.m

Download this file

268 lines (236 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
% TESTICA - Test the RUNICA function's ability to separate synthetic sources.
% Use the input variables to estimate the (best) decomposition accuracy
% for a given data set size.
% Usage:
% >> testica(channels,frames); % No return variable -> plot results
% >> [testresult] = testica(channels,frames,sources,exppow,shape);
% % Return variable -> return results with no plots
% Inputs:
% channels = number of simulated data channels {no default}
% frames = number of simulated time points {no default}
% sources = number of simulated quasi-independent sources {default: =channels}
% exppow = exponential power for scaling size of the sources (0->all equal)
% {default: -0.05 -> Ex: 14 sources scaled between 1.0 and 0.24}
% shape = varies monotonically with kurtosis of the simulated sources
% {default: 1.2 -> source kurtosis near 1 (super-Gaussian>0)}
%
% Authors: Scott Makeig & Te-Won Lee, SCCN/INC/UCSD, La Jolla, 2-27-1997
%
% See also: RUNICA
% Copyright (C) 2-27-97 Scott Makeig & Te-Won Lee, SCCN/INC/UCSD, scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 2-28-97 added source, shape and exppow parameters, kurtosis -sm
% 4-03-97 shortened name to TESTICA -sm
% 4-14-97 changed call to RUNICA to use new variable order -sm
% 4-16-97 prints max and min abs corr -sm
% 7-10-97 changed to NEWRUNICA, added SURF plot -sm
% 7-30-97 altered RUNICA call to fit version 3.0 -sm
% 3-02-00 replaced IDIT call with call to Benjamin Blankertz' EYELIKE -sm
% 3-08-00 added kurt and exppow plots, changed defaults, added plot labels -sm
% 01-25-02 reformated help & license, added links -ad
function [testresult] = testica(channels,frames,sources,exppow,shape)
icadefs; % read BACKCOLOR
% Default RUNICA parameter values:
block = 0; % default block size
lrate = 0; % default starting lrate
adeg = 0; % default annealing threshold
maxsteps = 0; % default
sphereflag = 'on'; % default yes, perform sphering
stop = 0.000001; % default stopping wchange
% Defaults:
default_chans = 31;
default_frames = 10000;
% default sources = channels
default_exppow = -0.05;
default_shape = 1.2;
plotflag = 1;
try, plotflag = ismatlab; catch, end
if nargin<2
help testica
return
end
if nargin<5
shape = default_shape;
end
if nargin<4
exppow = default_exppow;
end
if nargin<3,
sources = 0;
end
if nargin<2
frames = 0;
end
if nargin < 1
channels = 0;
end
if frames == 0,
frames = default_frames;
end
if channels == 0,
channels = default_chans;
end
if sources == 0,
sources = channels;
end
if sources < channels,
fprintf('testica() - sources must be >= channels.\n');
exit 1
end
% Generate artificial super-Gaussian sources:
fprintf('\n Testing runica() using %d simulated sources.\n\n',sources);
fprintf('Computing %d simulated source activations of length %d ...\n', ...
sources,frames);
fprintf('Simulated source strengths: %4.3f to %4.3f.\n', ...
1.0, exp(exppow*(channels-1)));
exppowers = zeros(1,channels);
exppowers(1) = 1.0;
for s=1:sources
exppowers(s) = exp(exppow*(s-1));
end
% Synthesize random source activations
super=randn(sources,frames).*(exppowers'*ones(1,frames));
super=sign(super).*abs(super.^shape); % make super-Gaussian if shape > 1
% fprintf('Size of super = %d,%d\n',size(super,1),size(super,2));
if frames > 40 && plotflag
figure
pos = get(gcf,'position');
off = [40 -40 0 0]; % succeeding figure screen position offsets
hist(super(1,:),round(frames/20));
tt=title('Amplitude distribution of source 1');
set(tt,'fontsize',14);
xlm=get(gca,'xlim');
ylm=get(gca,'ylim');
kurttext = ['Kurtosis = ' num2str(kurt(super(1,:)),3)];
tp=[xlm;ylm]*[0.25;0.75];
kt=text(tp(1),tp(2),kurttext);
set(kt,'fontsize',13);
set(kt,'horizontalalignment','center');
else
fprintf('Not plotting source amplitude histogram: data length too small.\n')
end
if nargout == 0 && plotflag
input('Hit enter to view source strengths: ');
fprintf('\n')
if frames <= 40
figure
pos = get(gcf,'position');
else
figure('position',pos+off);
end
plot(1:sources,exppowers);
hold on;plot(1:sources,exppowers,'r^');
set(gca,'xlim',[0 sources+1]);
set(gca,'ylim',[0 1]);
xt=title(['Relative source amplitudes (exppow = ' num2str(exppow,3) ')']);
set(xt,'fontsize',14);
axl=xlabel('Source Number');
ayl=ylabel('Relative Amplitude');
set(axl,'fontsize',14);
set(ayl,'fontsize',14);
end
k = kurt(super'); % find kurtosis of rows of super
maxkurt = max(k); minkurt=min(k);
fprintf('Simulated source kurtosis: %4.3f to %4.3f.\n',minkurt,maxkurt);
tmp = corrcoef(super');
i = find(tmp<1);
minoff = min(abs(tmp(i)));
maxoff = max(abs(tmp(i)));
fprintf('Absolute correlations between sources range from %5.4f to %5.4f\n', ...
minoff,maxoff);
fprintf('Mixing the simulated sources into %d channels ...\n',channels);
forward = randn(channels,sources); % random forward mixing matrix
data = forward*super; % these are the simulated observed data
if nargout == 0
input('Hit enter to start ICA decomposition: ')
fprintf('\n')
end
fprintf('Decomposing the resulting simulated data using runica() ...\n');
[weights,sphere,compvars,bias,signs,lrates,activations] = runica(data, ...
'block',block, ...
'lrate',lrate, ...
'nochange',stop, ...
'annealdeg',adeg, ...
'maxsteps',maxsteps, ...
'sphering',sphereflag, 'weights',eye(channels));
fprintf('ICA decomposition complete.\n');
% Alternatively, activations = icaact(data,weights,sphere,datamean);
fprintf('\nScaling and row-permuting the resulting performance matrix ...\n')
testid = weights*sphere*forward(:,1:channels);
% if separation were complete, this
% would be a scaled and row-permuted
% identity matrix
testresult = eyelike(testid); % permute output matrix rows to rememble eye()
% using Benjamin Blankertz eyeLike() - 3/2/00
% testresult = idit(testid); % permute output matrix rows to rememble EYE
% scale to make max column elements all = 1
tmp = corrcoef(activations');
i = find(tmp<1);
maxoff = max(abs(tmp(i)));
minoff = min(abs(tmp(i)));
fprintf('Absolute activation correlations between %5.4f and %5.4f\n',minoff,maxoff);
i = find(testresult<1); % find maximum abs off-diagonal value
maxoff = max(abs(testresult(i)));
meanoff = mean(abs(testresult(i)));
if sources > channels,
fprintf('The returned matrix measures the separation');
fprintf('of the largest %d simulated sources,\n',channels);
end
fprintf('Perfect separation would return an identity matrix.\n');
fprintf('Max absolute off-diagonal value in the returned matrix: %f\n',maxoff);
fprintf('Mean absolute off-diagonal value in the returned matrix: %f\n',meanoff);
[corr,indx,indy,corrs] = matcorr(activations,super);
fprintf('Absolute corrs between best-matching source and activation\n');
fprintf(' component pairs range from %5.4f to %5.4f\n', ...
abs(corr(1)),abs(corr(length(corr))));
if nargout == 0
fprintf('\nView the results:\n');
fprintf('Use mouse to rotate the image.\n');
end
if ~plotflag, return; end
figure('Position',pos+2*off);
set(gcf,'Color',BACKCOLOR);
surf(testresult); % plot the resulting ~identity matrix
st=title('Results: Test of ICA Separation');
set(st,'fontsize',14)
sxl=xlabel('Source Out');
set(sxl,'fontsize',14);
syl=ylabel('Source In');
set(syl,'fontsize',14);
szl=zlabel('Relative Recovery');
set(szl,'fontsize',14);
view(-52,50);
axis('auto');
if max(max(abs(testresult)))>1
fprintf('NOTE: Some sources not recovered well.\n');
fprintf('Restricting plot z-limits to: [-1,1]\n');
set(gca,'zlim',[-1 1]);
end
rotate3d
if nargout == 0
testresult = [];
end