[422372]: / functions / miscfunc / rmart.m

Download this file

214 lines (180 with data), 7.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
% RMART - Remove eye artifacts from EEG data using regression with
% multiple time lags. Each channel is first made mean-zero.
% After JL Kenemans et al., Psychophysiology 28:114-21, 1991.
%
% Usage: >> rmart('datafile','outfile',nchans,chanlist,eogchan,[threshold])
% Example: >> rmart('noisy.floats','clean.floats',31,[2:31],7)
%
% Input: datafile - input float data file, multiplexed by channel
% outfile - name of output float data file
% nchans - number of channels in datafile
% chanlist - indices of EEG channel(s) to process (1,...,nchans)
% eogchan - regressing channel indices(s) (1,...,nchans)
% threshold- abs threshold value to trigger regression {def|0 -> 80}
%
% Output: Writes [length(chanlist),size(data,2)] floats to 'outfile'
%
% Note: Regression epoch length and number of lags are set in the script.
% Some machines may require a new byte_order value in the script.
% note that RUNICA -> ICAPROJ should give better results! See
% Jung et al., Psychophysiology 111:1745-58, 2000.
%
% Author: Tzyy-Ping Jung, SCCN/INC/UCSD, La Jolla, 1997
% Copyright (C) 1997 Tzyy-Ping Jung, SCCN/INC/UCSD, scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 2-22-97 Tzyy-Ping Jung CNL/Salk Institute, La Jolla, CA
% 2-24-97 Formatted for ICA package release -Scott Makeig
% 12-10-97 Changed name from rmartifact to rmart for toolbox inclusion -sm
% 12-11-97 Adapted to read/write a float matrix -sm & sw
% 09-14-00 Added comments and help -sm
% 01-25-02 reformated help & license -ad
function rmart(datafile,outfile,nchans,chanlist,eogchan,threshold)
if nargin < 5
help rmart
return
end
%
% The following parameters may be fine-tuned for a data set
%
DEF_THRESHOLD = 80; % trigger regression on blocks exceeding this (default)
epoch = 80; % remove artifacts in successive blocks of this length
nlags = 40; % perform multiple regression filtering of this length
byte_order = 'b';% (machine-dependent) byte order code for fopen();
MAKE_MEAN_ZERO = 1 % 1/0 flag removing mean offset from each channel
fprintf('Performing artifact regression on data in %s.\n',datafile);
if nargin<6
threshold = 0;
end
if threshold == 0,
threshold = DEF_THRESHOLD;
end
fprintf('Regression threshold %g.\n',threshold);
%
% Read the input data
%
[fid,msg]=fopen(datafile,'r',byte_order); % open datafile
if fid < 3,
fprintf('rmart() - could not open data file: %s\n',msg);
exit 1
end
data=(fread(fid,'float'))';
status=fclose('all');
if rem(length(data),nchans) == 0 % check length
fprintf('rmart() - data length not divisible by %d chans.\n',nchans);
return
end
data = reshape(data,nchans,length(data)/nchans);
[chans,frames] = size(data);
fprintf('Data of size [%d,%d] read.\n',chans,frames);
eog = data(eogchan,:);
data = data(chanlist,:);
procchans = length(chanlist);
fprintf('Regression epoch length %d frames.\n',epoch);
fprintf('Using %d regression lags.\n',nlags);
if length(eogchan)> 1
fprintf('Processing %d of %d channels using %d EOG channels.\n',...
procchans,chans,length(eogchan));
else
fprintf('Processing %d of %d channels using EOG channel %d.\n',...
procchans,chans,eogchan);
end
%
% Process the data
%
for i=1:procchans
chan = chanlist(i);
idx=[];
frame=1+epoch/2+nlags/2;
if MAKE_MEAN_ZERO
data(chan,:) = data(chan,:) - mean(data(chan,:)); % make mean-zero
end
% Search the EOG & EEG records for values above threshold,
% Selected frame numbers are registered in the variable "idx".
% The entries in "idx" are at least epoch apart to avoid double
% compensation (regression) on the same portion of the EEG data.
while frame <= length(eog)-epoch/2-nlags/2, % foreach epoch in channel
stop = min(frame+epoch-1,eogframes);
tmp= ...
find( abs(eog(frame:stop)) >= threshold ...
| abs(data(chan,frame:stop)) >= threshold);
% find beyond-threshold values
if length(tmp) ~= 0
mark = tmp(1)+frame-1;
if length(idx) ~= 0
if mark-idx(length(idx)) < epoch,
idx=[idx idx(length(idx))+epoch]; % To guarantee idx(i) & idx(i-1)
% are at least EPOCH points apart
frame = idx(length(idx))+epoch/2;
else
idx=[idx mark];
frame = mark + epoch/2;
end
else
idx=[idx mark];
frame = mark + epoch/2;
end
else
frame=frame+epoch;
end
end % while
% For each registered frame, take "epoch" points
% surrounding it from the EEG, and "epoch + lag" points
% from the EOG channel. Then perform multivariate
% linear regression on EEG channel.
for j=1:length(idx);
art=ones(1,epoch);
eogtmp=eog(idx(j)-epoch/2-nlags/2:idx(j)+epoch/2-1+nlags/2);
% Collect EOG data from lag/2 points before to lag/2 points
% after the regression window.
for J=nlags:-1:1,
art=[art ; eogtmp(J:J+epoch-1)];
end
eegtmp=data(chan,idx(j)-epoch/2:idx(j)+epoch/2-1);
eegeog=eegtmp*art'; % perform the regression here
eogeog=art*art';
b=eegeog/eogeog;
eegtmp=eegtmp-b*art;
data(chan,idx(j)-epoch/2:idx(j)+epoch/2-1)=eegtmp;
end % j
end % i
%
% Write output file
%
[fid,msg]=fopen(outfile,'w',byte_order);
if fid < 3
fprintf('rmart() - could not open output file: %s\n',msg);
return
end
count = fwrite(fid,data,'float');
if count == procchans*frames,
fprintf('Output file "%s" written, size = [%d,%d] \n\n',...
outfile,procchans,frames);
else
fprintf('rmart(): Output file "%s" written, SIZE ONLY [%d,%g]\n',...
outfile,procchans,count/procchans);
end
fclose('all');