[422372]: / functions / miscfunc / gabor2d.m

Download this file

121 lines (110 with data), 4.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
% GABOR2D - generate a two-dimensional gabor matrice.
%
% Usage:
% >> [ matrix ] = gabor2d(rows, columns);
% >> [ matrix ] = gabor2d( rows, columns, freq, ...
% angle, sigmaR, sigmaC, meanR, meanC, dephase, cut)
% Example :
% >> imagesc(gabor2d( 50, 50))
%
% Inputs:
% rows - number of rows
% columns - number of columns
% freq - frequency of the sinusoidal function in degrees (default: 360/rows)
% angle - angle of rotation of the resulting 2-D array in
% degrees of angle {default: 0}.
% sigmaR - standard deviation for rows {default: rows/5}
% sigmaC - standard deviation for columns {default: columns/5}
% meanR - mean for rows {default: center of the row}
% meanC - mean for columns {default: center of the column}
% dephase - phase offset in degrees {default: 0}. A complex Gabor wavelet
% can be build using gabor2dd(...., 0) + i*gabor2d(...., 90),
% 0 and 90 being the phase offset of the real and imaginary parts
% cut - percentage (0->1) of maximum value below which to remove values
% from the matrix {default: 0}
% Output:
% matrix - output gabor matrix
%
% Author: Arnaud Delorme, CNL / Salk Institute, 2001
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function mat = gabor2d( sizeX, sizeY, freq, angle, sigmaX, sigmaY, meanX, ...
meanY, dephase, cut);
if nargin < 2
help gabor2d
return;
end
if nargin < 3
freq = 360/sizeX;
end
if nargin < 4
angle = 0;
end
if nargin < 5
sigmaX = sizeX/5;
end
if nargin < 6
sigmaY = sizeY/5;
end
if nargin < 7
meanX = (sizeX+1)/2;
end
if nargin < 8
meanY = (sizeY+1)/2;
end
if nargin < 9
dephase = 0;
end
if nargin < 10
cut = 0;
end
freq = freq/180*pi;
X = linspace(1, sizeX, sizeX)'* ones(1,sizeY);
Y = ones(1,sizeX)' * linspace(1, sizeY, sizeY);
%[-sizeX/2:sizeX/2]'*ones(1,sizeX+1);
%Y = ones(1,sizeY+1)' *[-sizeY/2:sizeY/2];
rotatedmat = ((X-meanX)+i*(Y-meanY)) * exp(i*angle/180*pi);
mat = sin(real(rotatedmat)*freq + dephase/180*pi).*exp(-0.5*( ((X-meanX)/sigmaX).*((X-meanX)/sigmaX)...
+((Y-meanY)/sigmaY).*((Y-meanY)/sigmaY)))...
/((sigmaX*sigmaY)^(0.5)*pi);
if cut > 0
maximum = max(max(mat))*cut;
I = find(mat < maximum);
mat(I) = 0;
end
return;
% other solution
% --------------
for X = 1:sizeX
for Y = 1:sizeY
mat(X,Y) = sin(real((X-meanX+j*(Y-meanY))*exp(i*angle/180*pi))*freq + dephase/180*pi) ...
.*exp(-0.5*( ((X-meanX)/sigmaX).*((X-meanX)/sigmaX)...
+((Y-meanY)/sigmaY).*((Y-meanY)/sigmaY)))...
/((sigmaX*sigmaY)^(0.5)*pi);
end
end
return;