[422372]: / functions / miscfunc / fieldtrip2eeglab.m

Download this file

141 lines (132 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
% fieldtrip2eeglab - convert Fieldtrip structures to EEGLAB dataset
%
% EEG = fieldtrip2eeglab(header, rawdata, evt);
% EEG = fieldtrip2eeglab(data);
%
% Inputs:
% header - Fieldtrip data header
% rawdata - Fieldtrip raw data
% evt - Fieldtrip event structure (optional)
% data - Fieldtrip data out of ft_preprocessing. Note that this uses
% a legacy conversion method. It is better to use
% fieldtrip2eeglab(data.hdr, data.trial) to use the default
% FileIO API.
%
% Output:
% EEG - EEGLAB structure
%
% Author: Arnaud Delorme, UCSD
% Copyright (C) Arnaud Delorme, UCSD 2018
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function EEG = fieldtrip2eeglab(header,data,evt)
if nargin < 3
evt = [];
end
if nargin >= 2
EEG = pop_fileio(header, data, evt);
else
fprintf(2, 'fieldtrip2eeglab: Use 2-input argument, header and data to use the fileio API to convert Fieldtrip data\n')
if isfield(header, 'hdr')
% use the hdr field in the data
hdr = header.hdr;
if isfield(header, 'label')
hdr.label = header.label;
end
else
% create a minimal header
hdr.nChans = numel(header.label);
hdr.nSamplesPre = 0; % FIXME perhaps better to make it nan?; And what about nSamplesPst?
if iscell(header.trial)
hdr.nTrials = numel(header.trial);
hdr.nSamples = numel(header.time{1}); % variable length trials will be caught below
if isfield(header, 'fsample')
hdr.Fs = header.fsample;
else
hdr.Fs = 1./mean(diff(header.time{1}));
end
else
hdr.nTrials = size(header.trial,1);
hdr.nSamples = numel(header.time);
if isfield(header, 'fsample')
hdr.Fs = header.fsample;
else
hdr.Fs = 1./mean(diff(header.time));
end
end
end
EEG = pop_fileio(hdr, header);
if iscell(EEG.data) && length(EEG.data) == 1
EEG.data = EEG.data{1};
EEG.times = header.time{1};
elseif iscell(EEG.data)
len = cellfun(@(x)size(x,2), EEG.data);
unLen = unique(len);
if length(unLen) > 1
if length(unLen) > 2 || diff(unLen) > 1
error('Epochs of different length, conversion is not possible');
else
fprintf(2, 'Epochs of different length, but small difference in sample\n');
fprintf(2, 'Assuming outlier due to fractional sample limits and selecting the most common epoch length\n');
e1 = sum(len == unLen(1));
e2 = sum(len == unLen(2));
if min(e1, e2) > 5
error('Too many epochs to remove, check data');
end
if e1 > e2
fprintf(2, 'Truncating %d epochs\n', e2);
epochsToTruncate = find(len == unLen(2));
truncateLen = unLen(1);
else
fprintf(2, 'Truncating %d epochs\n', e1);
epochsToTruncate = find(length == unLen(1));
truncateLen = unLen(2);
end
for iEpoch = 1:length(epochsToTruncate)
EEG.data{epochsToTruncate(iEpoch)} = EEG.data{epochsToTruncate(iEpoch)}(:,1:end-1);
end
end
end
% EEG.data = [ EEG.data{:} ];
EEG.data = cat(3, EEG.data{:});
EEG.pnts = len(1);
else
% error('Unknown fieldtrip data format');
% the trial field was a 3D matrix
EEG.data = permute(EEG.data, [2 3 1]);
% overrule the previously created metadata
[EEG.nbchan, EEG.pnts, EEG.trials] = size(EEG.data);
end
if iscell(header.time) % assuming uniformity of trials
EEG.xmin = header.time{1}(1);
EEG.xmax = header.time{1}(end);
else
EEG.xmin = header.time(1);
EEG.xmax = header.time(end);
end
EEG.trials = size(EEG.data,3);
EEG = eeg_checkset(EEG);
end