[422372]: / functions / miscfunc / corrimage.m

Download this file

622 lines (560 with data), 25.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
% CORRIMAGE - compute correlation image between an event and amplitude
% and phase in the time-frequency domain.
%
% Usage:
% corrimage(data, sortvar, times);
% [times, freqs, alpha, sigout, limits ] = corrimage(data, sortvar, ...
% times, 'key1', val1, 'key2', val2, ...)
%
% Inputs:
% data - [float array] data of size (times,trials)
% sortvar - [float array] sorting variable of size (trials)
% times - [float array] time indices for every data point. Size of
% (times). Note: same input as the times vector for erpimage.
%
% Optional input:
% 'mode' - ['phase'|'amp'] compute correlation of event values with
% phase ('phase') or amplitude ('amp') of signal at the
% given time-frequency points. Default is 'amp'.
% 'freqs' - [min nfreqs max] build a frequency vector of size nfreqs
% with frequency spaced in a log scale. Then compute
% correlation at these frequency value.
% Default is 50 points in a log scale between 2.5Hz to 50Hz.
% 'times' - [float vector] compute correlation at these time value (ms).
% (uses closest times points in 'times' input and return
% them in the times output).
% Default is 100 steps between min time+5% of time range and
% max time-5%. Enter only 2 values [N X] to generate N
% time points and trim by X %. If N is negative, uses it as
% a subsampling factor [-3 5] trims times by 5% and subsample
% by 3 (by subsampling one obtains a regularly spaced times).
% 'trim' - [low high] low and high percentile of sorted sortvar values
% to retain. i.e. [5 95] remove the 5 lowest and highest
% percentile of sortvar values (and associated data) before
% computing statistics. Default is [0 100].
% 'align' - [float] same as 'align' parameter of ERPIMAGE. This
% parameter is used to constrain the 'times' parameter so
% correlation with data trials containing 0-values (as a
% result of data alignment) are avoided: computing these
% correlations would produce spurious significant results.
% Default is no alignment.
% 'method' - ['erpimage'|timefreq'] use either the ERPIMAGE function
% of the TIMEFREQ function to compute spectral decomposition.
% Default is 'timefreq' for speed reasons (note that both
% methods should return the same results).
% 'erpout' - [min max] regress out ERP using the selected time-window [min
% max] in ms (the ERP is subtracted from the whole time period
% but only regressed out in the selected time window).
% 'triallimit' - [integer array] specify trial boundaries for subjects. For
% instance [1 200 400] indicates 2 subjects, trials 1 to 199
% for subject 1 and trials 200 to 399 for subject 2. This is
% currently only used for regressing erp out.
%
% Processing options:
% 'erpimopt' - [cell array] erpimage additional options (number of cycle ...).
% 'tfopt' - [cell array] timefreq additional options (number of cycle ...).
%
% Plotting options:
% 'plotvals' - [cell array of output values] enter output values here
% { times freqs alpha sigout} to replot them.
% 'nofig' - ['on'|'off'] do not create figure.
% 'cbar' - ['on'|'off'] plot color bar. Default: 'on'.
% 'smooth' - ['on'|'off'] smooth significance array. Default: 'on'.
% 'plot' - ['no'|'alpha'|'sigout'|'sigoutm'|'sigoutm2'] plot -10*log(alpha)
% values ('alpha'); output signal (slope or ITC) ('sigout'),
% output signal masked by significance ('sigoutm') or the last
% 2 option combined ('sigoutm2'). 'no' prevent the function
% from plotting. In addition, see pmask. Default is 'sigoutmasked'.
% 'pmask' - [real] maximum p value to show in plot. Default is 0.00001
% (0.001 taking into account multiple comparisons (100)). Enter
% 0.9XXX to get the higher tail or a negative value (e.e., -0.001
% to get both tails).
% 'vert' - [real array] time vector for vertivcal lines.
% 'limits' - [min max] plotting limits.
%
% Outputs:
% times - [float vector] vector of times (ms)
% freqs - [float vector] vector of frequencies (Hz)
% alpha - [float array] array (freqs,times) of p-values.
% sigout - [float array] array (freqs,times) of signal out (coherence
% for phase and slope for amplitude).
%
% Important note: the 'timefreq' method may truncate the time window to
% compute the spectral decomposition at the lowest freq.
%
% Author: Arnaud Delorme & Scott Makeig, SCCN UCSD,
% and CNL Salk Institute, 18 April 2003
%
% See also: ERPIMAGE
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2002 Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [time, freq, alpha, sigout, limits, tf, sortvar] = corrimage(data, sortvar, timevect, varargin)
if nargin < 3
help corrimage;
return;
end
if isempty(timevect), timevect = [1 2]; end
% check inputs
% ------------
g = finputcheck(varargin, { ...
'freqs' 'real' [0 Inf] [2.5 50 50];
'times', 'real', [], [100 5];
'mode', 'string', { 'phase', 'amp' }, 'amp';
'vert' 'real' [] [];
'align' { 'real','cell' } [] [];
'plotvals' 'cell' [] {};
'pmask' 'real' [] 0.00001;
'triallimit' 'integer' [] [];
'trim' 'real' [0 100] [0 100];
'limits' 'real' [] [];
'method' 'string' { 'erpimage','timefreq' } 'timefreq';
'plot' 'string' { 'no','alpha','sigout','sigoutm','sigoutp','sigoutm2' } 'sigoutm';
'nofig' 'string' { 'on','off' } 'off';
'cbar' 'string' { 'on','off' } 'on';
'smooth' 'string' { 'on','off' } 'off';
'erpout' 'real' [] [];
'tfopt' 'cell' [] {};
'erpimopt' 'cell' [] {} });
if ischar(g), error(g); end
fprintf('Generating %d frequencies in log scale (ignore message on linear scale)\n', g.freqs(2));
g.freqs = logscale(g.freqs(1), g.freqs(3), g.freqs(2));
frames = length(timevect);
if size(data,1) == 1
data = reshape(data, frames, size(data,2)*size(data,3)/frames);
end
% trim sortvar values
% -------------------
[sortvar sortorder] = sort(sortvar);
data = data(:, sortorder);
len = length(sortvar);
lowindex = round(len*g.trim(1)/100)+1;
highindex = round(len*g.trim(2)/100);
sortvar = sortvar(lowindex:highindex);
data = data(:, lowindex:highindex);
if lowindex ~=1 || highindex ~= length(sortorder)
fprintf('Actual percentiles %1.2f-%1.2f (indices 1-%d -> %d-%d): event vals min %3.2f; max %3.2f\n', ...
100*(lowindex-1)/len, 100*highindex/len, len, lowindex, highindex, min(sortvar), max(sortvar));
end
% assign subject number for each trial
% ------------------------------------
if ~isempty(g.triallimit)
alltrials = zeros(1,len);
for index = 1:length(g.triallimit)-1
alltrials([g.triallimit(index):g.triallimit(index+1)-1]) = index;
end
alltrials = alltrials(sortorder);
alltrials = alltrials(lowindex:highindex);
end
%figure; hist(sortvar)
% constraining time values depending on data alignment
% ----------------------------------------------------
srate = 1000*(length(timevect)-1)/(timevect(end)-timevect(1));
if ~isempty(g.align)
if iscell(g.align)
fprintf('Realigned sortvar plotted at %g ms.\n',g.align{1});
shifts = round((g.align{1}-g.align{2})*srate/1000); % shifts can be positive or negative
g.align = g.align{1};
else
if isinf(g.align)
g.align = median(sortvar);
end
fprintf('Realigned sortvar plotted at %g ms.\n',g.align);
% compute shifts
% --------------
shifts = round((g.align-sortvar)*srate/1000); % shifts can be positive or negative
end
%figure; hist(shifts)
minshift = min(shifts); % negative
maxshift = max(shifts); % positive
if minshift > 0, error('minshift has to be negative'); end
if maxshift < 0, error('maxshift has to be positive'); end
% realign data for all trials
% ---------------------------
aligndata=zeros(size(data))+NaN; % begin with matrix of zeros()
for t=1:size(data,2), %%%%%%%%% foreach trial %%%%%%%%%
shft = shifts(t);
if shft>0, % shift right
aligndata(shft+1:frames,t)=data(1:frames-shft,t);
elseif shft < 0 % shift left
aligndata(1:frames+shft,t)=data(1-shft:frames,t);
else % shft == 0
aligndata(:,t) = data(:,t);
end
end % end trial
data = aligndata(maxshift+1:frames+minshift,:);
if any(any(isnan(data))), error('NaNs remaining after data alignment'); end
timevect = timevect(maxshift+1:frames+minshift);
% take the time vector subset
% ---------------------------
if isempty(timevect), error('Shift too big, empty time vector');
else fprintf('Time vector truncated for data alignment between %1.0f and %1.0f\n', ...
min(timevect), max(timevect));
end;
end
% regress out the ERP from the data (4 times to have residual ERP close to 0)
% ---------------------------------------------------------------------------
if ~isempty(g.erpout)
%data = erpregout(data);
%data = erpregout(data);
%data = erpregout(data);
disp('Regressing out ERP');
erpbeg = mean(data,2);
if ~isempty(g.triallimit)
for index = 1:length(g.triallimit)-1
trials = find(alltrials == index);
%[data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);
erpstart = mean(data(:,trials),2);
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
erpend = mean(data(:,trials),2);
fprintf([ '***********************************************\n' ...
'Ratio in ERP after regression (compare to before) is %3.2f\n' ...
'***********************************************\n' ], mean(erpend./erpstart));
end
end
erpend = mean(data,2);
fprintf([ '***********************************************\n' ...
'Ratio in grand ERP after regression (compare to before) is %3.2f\n' ...
'***********************************************\n' ], mean(erpend./erpbeg));
if 0
%trials = find(alltrials == 1);
data2 = data;
dasf
[data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);
figure; subplot(1,2,1); erpimage(data, sortvar, timevect, '', 300, 500, 'erp');
figure;
subplot(1,2,1); erpimage(data2, sortvar, timevect, '', 300, 500, 'erp');
subplot(1,2,2); erpimage(data , sortvar, timevect, '', 300, 500, 'erp');
figure;
subplot(1,2,1); erpimage(data2(:,trials), sortvar(trials), timevect, '', 0, 0, 'erp');
subplot(1,2,2); erpimage(data (:,trials), sortvar(trials), timevect, '', 0, 0, 'erp');
figure;
for index = 1:length(g.triallimit)-1
subplot(3,5,index);
trials = find(alltrials == index);
erpimage(data(:,trials), sortvar(trials), timevect, '', 50, 100, 'erp');
end
disp('Regressing out ERP');
if ~isempty(g.triallimit)
for index = 1:length(g.triallimit)-1
trials = find(alltrials == index);
[data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
data(:,trials) = erpregout(data(:,trials));
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
%data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);
end
else
%data = erpregout(data, [timevect(1) timevect(end)], g.erpout);
end
end
end
% generate time points
% --------------------
g.times = gettimes(timevect, g.times);
data = reshape(data, 1, size(data,2)*size(data,1));
% time frequency decomposition
% ----------------------------
if strcmpi(g.method, 'timefreq') && isempty(g.plotvals)
data = reshape(data, length(data)/length(sortvar), length(sortvar));
[tf, g.freqs, g.times] = timefreq(data, srate, 'freqs', g.freqs, 'timesout', g.times, ...
'tlimits', [min(timevect) max(timevect)], 'wavelet', 3);
outvar = sortvar;
end
% compute correlation
% -------------------
if strcmpi(g.mode, 'phase') && isempty(g.plotvals)
for freq = 1:length(g.freqs)
fprintf('Computing correlation with phase %3.2f Hz ----------------------\n', g.freqs(freq));
for time = 1:length(g.times)
if strcmpi(g.method, 'erpimage')
[outdata,outvar,outtrials,limits,axhndls,erp, ...
amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx] =erpimage(data,sortvar,timevect, ...
'', 0,0,g.erpimopt{:}, 'phasesort', [g.times(time) 0 g.freqs(freq)], 'noshow', 'yes');
else
phsangls = angle( squeeze(tf(freq, time, :))' );
end
% computing ITCs
[ ITC(freq, time) alpha(freq, time) ] = ...
bootcircle(outvar/mean(outvar), exp(j*phsangls), 'naccu', 250);
% accumulate 200 values, fitted with a normal distribution
% --------------------------------------------------------
%cmplx = outvar .* exp(j*phsangls)/mean(outvar);
%ITC(freq, time) = mean(cmplx);
%alpha(freq,time) = bootstat(outvar/mean(outvar), exp(j*phsangls), 'res = mean(arg1 .* arg2)', ...
% 'naccu', 100, 'vals', abs(ITC(freq, time)), 'distfit', 'norm');
end
end
sigout = ITC;
elseif isempty(g.plotvals)
for freq = 1:length(g.freqs)
fprintf('Computing correlation with amplitude %3.2f Hz ----------------------\n', g.freqs(freq));
for time = 1:length(g.times)
if strcmpi(g.method, 'erpimage')
[outdata,outvar,outtrials,limits,axhndls,erp, ...
amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx] =erpimage(data,sortvar,timevect, ...
'', 0,0,g.erpimopt{:}, 'ampsort', [g.times(time) 0 g.freqs(freq)], 'noshow', 'yes');
else
phsamp = abs(squeeze(tf(freq, time, :)))';
end
% computing ITCs
[ypred alpha(freq, time) Rsq slope(freq, time)] = fastregress(outvar, 20*log10(phsamp));
end
end
sigout = slope;
else
g.times = g.plotvals{1};
g.freqs = g.plotvals{2};
alpha = g.plotvals{3};
sigout = g.plotvals{4};
end
% plot correlation
% ----------------
if ~strcmp('plot', 'no')
if ~isreal(sigout),
if strcmpi(g.plot, 'sigoutp')
sigoutplot = angle(sigout);
else
sigoutplot = abs(sigout);
end
else sigoutplot = sigout;
end
sigouttmp = sigoutplot;
if strcmpi(g.smooth, 'on')
tmpfilt = gauss2d(3,3,.3,.3);
tmpfilt = tmpfilt/sum(sum(tmpfilt));
alpha = conv2(alpha, tmpfilt, 'same');
end
% mask signal out
if g.pmask > 0.5
indices = find( alpha(:) < g.pmask);
sigouttmp = sigoutplot;
sigouttmp(indices) = 0;
elseif g.pmask < 0 % both sides, i.e. 0.01
sigouttmp = sigoutplot;
indices = intersect_bc(find( alpha(:) > -g.pmask), find( alpha(:) < 1+g.pmask));
sigouttmp(indices) = 0;
else
sigouttmp = sigoutplot;
indices = find( alpha(:) > g.pmask);
sigouttmp(indices) = 0;
end
if strcmpi(g.nofig, 'off'), figure; end
switch g.plot
case 'alpha', limits = plotfig(g.times, g.freqs, -log10(alpha), g);
case 'sigout', limits = plotfigsim(g.times, g.freqs, sigoutplot, g);
case { 'sigoutm' 'sigoutp' }, limits = plotfigsim(g.times, g.freqs, sigouttmp, g);
case 'sigoutm2', limits = subplot(1,2,1); plotfigsim(g.times, g.freqs, sigoutplot, g);
limits = subplot(1,2,2); plotfigsim(g.times, g.freqs, sigouttmp, g);
end
end
time = g.times;
freq = g.freqs;
return;
% formula for the normal distribution
% -----------------------------------
function y = norm(mu, sigma, x);
y = 1/sqrt(2) * exp( -(x-mu).^2/(sigma*sigma*2) ) / (sqrt(pi)*sigma);
% get time points
% ---------------
function val = gettimes(timevect, timevar);
if length(timevar) == 2
if timevar(1) > 0
% generate linearly space vector
% ------------------------------
npoints = timevar(1);
trim = timevar(2);
if length(timevect)-2*round(trim/100*length(timevect)) < npoints
npoints = length(timevect)-round(trim/100*length(timevect));
end
fprintf('Generating %d times points trimmed by %1.1f percent\n', npoints, trim);
timer = max(timevect) - min(timevect);
maxt = max(timevect)-timer*trim/100;
mint = min(timevect)+timer*trim/100;
val = linspace(mint,maxt, npoints);
else
% subsample data
% --------------
nsub = -timevar(1);
trim = timevar(2);
len = length(timevect);
trimtimevect = timevect(round(trim/100*len)+1:len-round(trim/100*len));
fprintf('Subsampling by %d and trimming data by %1.1f percent (%d points)\n', nsub, trim, round(trim/100*len));
val = trimtimevect(1:nsub:end);
end
else
val = timevar;
end;
% find closet points in data
oldval = val;
for index = 1:length(val)
[dum ind] = min(abs(timevect-val(index)));
val(index) = timevect(ind);
end
if length(val) < length(unique(val))
disp('Warning: duplicate times, reduce the number of output times');
end
if all(oldval == val)
disp('Debug msg: Time value unchanged by finding closest in data');
end;
% get log scale (for frequency)
% -------------
function val = logscale(a,b,n);
%val = [5 7 9]; return;
val = linspace(log(a), log(b), n);
val = exp(val);
% plot figure
% -----------
function limits = plotfig(times, freqs, vals, g)
icadefs;
imagesc(times, [1:size(vals,1)], vals);
colormap(DEFAULT_COLORMAP);
ticks = linspace(1, size(vals,1), length(freqs));
ticks = ticks(1:4:end);
set(gca, 'ytick', ticks);
set(gca, 'yticklabel', num2str(freqs(1:4:end)', 3))
xlabel('Time (ms)'); ylabel('Freq (Hz)');
if ~isempty(g.limits), caxis(g.limits); end
limits = caxis;
if ~isempty(g.vert)
for vert = g.vert(:)'
hold on; plot([vert vert], [0.001 500], 'k', 'linewidth', 2);
end
end
if strcmpi(g.cbar,'on')
cbar;
end
% plot figure with symmetrical phase
% ---------------------------------
function limits = plotfigsim(times, freqs, vals, g)
icadefs;
imagesc(times, [1:size(vals,1)], vals);
colormap(DEFAULT_COLORMAP);
ticks = linspace(1, size(vals,1), length(freqs));
ticks = ticks(1:4:end);
set(gca, 'ytick', ticks);
set(gca, 'yticklabel', num2str(freqs(1:4:end)', 3))
if ~isempty(g.limits)
caxis(g.limits);
limits = g.limits;
else
clim = max(abs(caxis));
limits = [-clim clim];
caxis(limits);
end
xlabel('Time (ms)'); ylabel('Freq (Hz)');
if ~isempty(g.vert)
for vert = g.vert(:)'
hold on; plot([vert vert], [0.01 500], 'k', 'linewidth', 2);
end
end
if strcmpi(g.cbar,'on')
cbar;
end
return;
% -----------------------------------------
% plot time-freq point (when clicking on it
% -----------------------------------------
function plotpoint(data, sortvar, timevect, freq, timepnts);
figure;
subplot(2,2,1);
erpimage(act_all(:,:),sortvar_all,timepnts, ...
'', 300,10,'erp', 'erpstd', 'caxis',[-1.0 1.0], 'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, ...
'phasesort', [500 0 5]); % aligned to median rt
% plot in polar coordinates phase versus RT
% -----------------------------------------
phaseang2 = [phsangls phsangls-2*pi]; phaseang2 = movav(phaseang2,[], 100);
outvar2 = [outvar outvar]; outvar2 = movav(outvar2,[], 100);
phaseang2 = phaseang2(length(phsangls)/2-50:length(phsangls)+length(phsangls)/2-50);
outvar2 = outvar2 (length(phsangls)/2-50:length(phsangls)+length(phsangls)/2-50);
subplot(2,2,3);
polar(phsangls, outvar, '.');
hold on; polar(phaseang2, outvar2, 'r');
% computing ITC
% -------------
cmplx = outvar .* exp(j*phsangls);
ITCval = mean(cmplx);
angle(ITCval)/pi*180;
abs(ITCval)/mean(outvar);
text(-1300,-1400,sprintf('ITC value: amplitude %3.4f, angle %3.1f\n', abs(ITCval)/mean(outvar), angle(ITCval)/pi*180));
% accumulate 200 values
% ---------------------
alpha = 0.05;
if exist('accarray') ~= 1, accarray = NaN; end
[sigval accarray] = bootstat(outvar/mean(outvar), phsangls, 'res = mean(arg1 .* exp(arg2*complex(0,1)))', ...
'accarray', accarray, 'bootside', 'upper', 'alpha', alpha);
text(-1300,-1600,sprintf('Threshold for significance at %d percent(naccu=200): %3.4f\n', alpha*100, sigval));
title(sprintf('Clust %d corr. theta phase at 500 ms and RT', clust));
% amplitude sorting
% -----------------
figure;
[outdata,outvar,outtrials,limits,axhndls,erp, ...
amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx]=erpimage(act_all(:,:),sortvar_all,timepnts, ...
'', 0,0,'erp', 'erpstd', 'caxis', 0.5, 'cbar', ...
'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, 'ampsort', [500 0 5]); % aligned to median rt
close;
subplot(2,2,2);
erpimage(act_all(:,:),sortvar_all,timevect, ...
'', 300,10,'erp', 'erpstd', 'caxis', 0.5, 'cbar', ...
'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, 'ampsort', [500 0 5]); % aligned to median rt
% compute correlation
% -------------------
[ypred alpha Rsq] = myregress(outvar, phsamp);
subplot(2,2,4);
plot(outvar, phsamp, '.');
hold on;
plot(outvar, ypred, 'r');
xlabel('Reaction time');
ylabel('Amplitude');
title(sprintf('Theta amp. at 500 ms vs RT (p=%1.8f, R^2=%3.4f)', alpha, Rsq));
set(gcf, 'position', [336 485 730 540], 'paperpositionmode', 'auto');
setfont(gcf, 'fontsize', 10);
eval(['print -djpeg clust' int2str(clust) 'corrthetart.jpg']);
% set up for command line call
% copy text from plotcorrthetaart
%timevect = times;
sortvar = sortvar_all;
data = act_all;
time = 1
freq = 1
g.times = 0;
g.freqs = 5;
g.erpimopt = {};