--- a +++ b/train_base.py @@ -0,0 +1,138 @@ +#!/usr/bin/env python +# coding: utf-8 +'''Subject-independent classification with KU Data, +using Deep ConvNet model from [1]. + +References +---------- +.. [1] Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., + Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F. & Ball, T. (2017). + Deep learning with convolutional neural networks for EEG decoding and + visualization. + Human Brain Mapping , Aug. 2017. Online: http://dx.doi.org/10.1002/hbm.23730 +''' + +import argparse +import json +import logging +import sys +from os import makedirs +from os.path import join as pjoin +from shutil import copy2, move + +import h5py +import numpy as np +import torch +import torch.nn.functional as F +from braindecode.datautil.signal_target import SignalAndTarget +from braindecode.models.deep4 import Deep4Net +from braindecode.torch_ext.optimizers import AdamW +from braindecode.torch_ext.util import set_random_seeds +from sklearn.model_selection import KFold + +logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', + level=logging.INFO, stream=sys.stdout) + +parser = argparse.ArgumentParser( + description='Subject-independent classification with KU Data') +parser.add_argument('datapath', type=str, help='Path to the h5 data file') +parser.add_argument('outpath', type=str, help='Path to the result folder') +parser.add_argument('-fold', type=int, + help='k-fold index, starts with 0', required=True) +parser.add_argument('-gpu', type=int, help='The gpu device to use', default=0) + +args = parser.parse_args() +datapath = args.datapath +outpath = args.outpath +fold = args.fold +assert(fold >= 0 and fold < 54) +# Randomly shuffled subject. +subjs = [35, 47, 46, 37, 13, 27, 12, 32, 53, 54, 4, 40, 19, 41, 18, 42, 34, 7, + 49, 9, 5, 48, 29, 15, 21, 17, 31, 45, 1, 38, 51, 8, 11, 16, 28, 44, 24, + 52, 3, 26, 39, 50, 6, 23, 2, 14, 25, 20, 10, 33, 22, 43, 36, 30] +test_subj = subjs[fold] +cv_set = np.array(subjs[fold+1:] + subjs[:fold]) +kf = KFold(n_splits=6) + +dfile = h5py.File(datapath, 'r') +torch.cuda.set_device(args.gpu) +set_random_seeds(seed=20200205, cuda=True) +BATCH_SIZE = 16 +TRAIN_EPOCH = 200 # consider 200 for early stopping + +# Get data from single subject. + + +def get_data(subj): + dpath = '/s' + str(subj) + X = dfile[pjoin(dpath, 'X')] + Y = dfile[pjoin(dpath, 'Y')] + return X, Y + + +def get_multi_data(subjs): + Xs = [] + Ys = [] + for s in subjs: + x, y = get_data(s) + Xs.append(x[:]) + Ys.append(y[:]) + X = np.concatenate(Xs, axis=0) + Y = np.concatenate(Ys, axis=0) + return X, Y + + +cv_loss = [] +for cv_index, (train_index, test_index) in enumerate(kf.split(cv_set)): + + train_subjs = cv_set[train_index] + valid_subjs = cv_set[test_index] + X_train, Y_train = get_multi_data(train_subjs) + X_val, Y_val = get_multi_data(valid_subjs) + X_test, Y_test = get_data(test_subj) + train_set = SignalAndTarget(X_train, y=Y_train) + valid_set = SignalAndTarget(X_val, y=Y_val) + test_set = SignalAndTarget(X_test[200:], y=Y_test[200:]) + n_classes = 2 + in_chans = train_set.X.shape[1] + + # final_conv_length = auto ensures we only get a single output in the time dimension + model = Deep4Net(in_chans=in_chans, n_classes=n_classes, + input_time_length=train_set.X.shape[2], + final_conv_length='auto').cuda() + # these are good values for the deep model + optimizer = AdamW(model.parameters(), lr=1*0.01, weight_decay=0.5*0.001) + model.compile(loss=F.nll_loss, optimizer=optimizer, iterator_seed=1, ) + + # Fit the base model for transfer learning, use early stopping as a hack to remember the model + exp = model.fit(train_set.X, train_set.y, epochs=TRAIN_EPOCH, batch_size=BATCH_SIZE, scheduler='cosine', + validation_data=(valid_set.X, valid_set.y), remember_best_column='valid_loss') + rememberer = exp.rememberer + base_model_param = { + 'epoch': rememberer.best_epoch, + 'model_state_dict': rememberer.model_state_dict, + 'optimizer_state_dict': rememberer.optimizer_state_dict, + 'loss': rememberer.lowest_val + } + torch.save(base_model_param, pjoin( + outpath, 'model_f{}_cv{}.pt'.format(fold, cv_index))) + model.epochs_df.to_csv( + pjoin(outpath, 'epochs_f{}_cv{}.csv'.format(fold, cv_index))) + cv_loss.append(rememberer.lowest_val) + + test_loss = model.evaluate(test_set.X, test_set.y) + with open(pjoin(outpath, 'test_base_s{}_f{}_cv{}.json'.format(test_subj, fold, cv_index)), 'w') as f: + json.dump(test_loss, f) + +best_cv = np.argmin(cv_loss) +best_dir = pjoin(outpath, "best") +makedirs(best_dir, exist_ok=True) +with open(pjoin(best_dir, "fold_bestcv.txt"), 'a') as f: + f.write("{}, {}\n".format(fold, best_cv)) +copy2(pjoin(outpath, 'model_f{}_cv{}.pt'.format(fold, best_cv)), + pjoin(best_dir, 'model_f{}.pt'.format(fold))) +copy2(pjoin(outpath, 'epochs_f{}_cv{}.csv'.format(fold, best_cv)), + pjoin(best_dir, 'epochs_f{}.csv'.format(fold))) +copy2(pjoin(outpath, 'test_base_s{}_f{}_cv{}.json'.format(test_subj, fold, best_cv)), + pjoin(best_dir, 'test_base_s{}_f{}.json'.format(test_subj, fold))) +dfile.close()