|
a |
|
b/eval_base.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# coding: utf-8 |
|
|
3 |
'''Subject-independent model evaluator. |
|
|
4 |
''' |
|
|
5 |
import argparse |
|
|
6 |
import json |
|
|
7 |
import logging |
|
|
8 |
import sys |
|
|
9 |
from os.path import join as pjoin |
|
|
10 |
|
|
|
11 |
import h5py |
|
|
12 |
import numpy as np |
|
|
13 |
import torch |
|
|
14 |
import torch.nn.functional as F |
|
|
15 |
from braindecode.models.deep4 import Deep4Net |
|
|
16 |
from braindecode.torch_ext.optimizers import AdamW |
|
|
17 |
from braindecode.torch_ext.util import set_random_seeds |
|
|
18 |
|
|
|
19 |
logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', |
|
|
20 |
level=logging.INFO, stream=sys.stdout) |
|
|
21 |
|
|
|
22 |
parser = argparse.ArgumentParser( |
|
|
23 |
description='Subject independent model evaluator.') |
|
|
24 |
parser.add_argument('datapath', type=str, help='Path to KU data') |
|
|
25 |
parser.add_argument('modelpath', type=str, help='Path to base model') |
|
|
26 |
parser.add_argument('outpath', type=str, help='Path to output') |
|
|
27 |
parser.add_argument('-gpu', type=int, help='The gpu device to use', default=0) |
|
|
28 |
|
|
|
29 |
args = parser.parse_args() |
|
|
30 |
datapath = args.datapath |
|
|
31 |
outpath = args.outpath |
|
|
32 |
modelpath = args.modelpath |
|
|
33 |
dfile = h5py.File(datapath, 'r') |
|
|
34 |
torch.cuda.set_device(args.gpu) |
|
|
35 |
set_random_seeds(seed=20200205, cuda=True) |
|
|
36 |
BATCH_SIZE = 16 |
|
|
37 |
|
|
|
38 |
# Randomly shuffled subject. |
|
|
39 |
subjs = [35, 47, 46, 37, 13, 27, 12, 32, 53, 54, 4, 40, 19, 41, 18, 42, 34, 7, |
|
|
40 |
49, 9, 5, 48, 29, 15, 21, 17, 31, 45, 1, 38, 51, 8, 11, 16, 28, 44, 24, |
|
|
41 |
52, 3, 26, 39, 50, 6, 23, 2, 14, 25, 20, 10, 33, 22, 43, 36, 30] |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
# Get data from single subject. |
|
|
45 |
def get_data(subj): |
|
|
46 |
dpath = '/s' + str(subj) |
|
|
47 |
X = dfile[pjoin(dpath, 'X')] |
|
|
48 |
Y = dfile[pjoin(dpath, 'Y')] |
|
|
49 |
return X[:], Y[:] |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
X, Y = get_data(subjs[0]) |
|
|
53 |
n_classes = 2 |
|
|
54 |
in_chans = X.shape[1] |
|
|
55 |
# final_conv_length = auto ensures we only get a single output in the time dimension |
|
|
56 |
model = Deep4Net(in_chans=in_chans, n_classes=n_classes, |
|
|
57 |
input_time_length=X.shape[2], |
|
|
58 |
final_conv_length='auto').cuda() |
|
|
59 |
|
|
|
60 |
# Dummy train data to set up the model. |
|
|
61 |
X_train = np.zeros(X[:2].shape).astype(np.float32) |
|
|
62 |
Y_train = np.zeros(Y[:2].shape).astype(np.int64) |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def reset_model(checkpoint): |
|
|
66 |
# Load the state dict of the model. |
|
|
67 |
model.network.load_state_dict(checkpoint['model_state_dict']) |
|
|
68 |
|
|
|
69 |
# Only optimize parameters that requires gradient. |
|
|
70 |
optimizer = AdamW(filter(lambda p: p.requires_grad, model.network.parameters()), |
|
|
71 |
lr=1*0.01, weight_decay=0.5*0.001) |
|
|
72 |
model.compile(loss=F.nll_loss, optimizer=optimizer, |
|
|
73 |
iterator_seed=20200205, ) |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
for fold, subj in enumerate(subjs): |
|
|
77 |
suffix = '_s' + str(subj) + '_f' + str(fold) |
|
|
78 |
checkpoint = torch.load(pjoin(modelpath, 'model_f' + str(fold) + '.pt'), |
|
|
79 |
map_location='cuda:' + str(args.gpu)) |
|
|
80 |
|
|
|
81 |
# Set up the model. |
|
|
82 |
reset_model(checkpoint) |
|
|
83 |
model.fit(X_train, Y_train, 0, BATCH_SIZE) |
|
|
84 |
|
|
|
85 |
X, Y = get_data(subj) |
|
|
86 |
X_test, Y_test = X[300:], Y[300:] |
|
|
87 |
test_loss = model.evaluate(X_test, Y_test) |
|
|
88 |
with open(pjoin(outpath, 'test_base' + suffix + '.json'), 'w') as f: |
|
|
89 |
json.dump(test_loss, f) |
|
|
90 |
|
|
|
91 |
dfile.close() |