[688072]: / examples / vae / train_factorecg_vae.py

Download this file

127 lines (108 with data), 3.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import pytorch_lightning as pl
from pytorch_lightning.loggers.neptune import NeptuneLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from torchmetrics import MetricCollection, MeanSquaredError
import yaml
import pandas as pd
import os
from ecgxai.utils.dataset import UniversalECGDataset
from ecgxai.utils.transforms import ApplyGain, ToTensor, To12Lead, Resample
from ecgxai.utils.metrics import TMW
from ecgxai.systems.VAE_system import GaussianVAE
from ecgxai.network.causalcnn.encoder import CausalCNNVEncoder
from ecgxai.network.causalcnn.decoder import CausalCNNVDecoder
from ecgxai.utils.loss import CombinedLoss, GaussianVAEReconLoss, KLDivergence
def run_trainer(params):
pl.seed_everything(1234)
# don't forget to update this for your own logger
api_key = open("neptune_token.txt", "r").read()
neptune_logger = NeptuneLogger(
api_key=api_key,
project=params['training']['project_name'],
tags=params['training']['tags'],
source_files=['*.py', '*.json', '*.yaml', '../../ecgxai/**/*.py']
)
neptune_logger.experiment["model/hyper-parameters"] = params
# define transforms
transform = transforms.Compose([Resample(500), ApplyGain(), ToTensor(), To12Lead()])
# define datasets
traindf = pd.read_csv(params["paths"]["training_labels"])
trainset = UniversalECGDataset(
'umcu',
params["paths"]["raw_data"],
traindf,
transform=transform
)
train_loader = DataLoader(
trainset,
batch_size=params['training']['batch_size'],
num_workers=8,
shuffle=True
)
valdf = pd.read_csv(params["paths"]["validation_labels"])
valset = UniversalECGDataset(
'umcu',
params["paths"]["raw_data"],
valdf,
transform=transform
)
val_loader = DataLoader(
valset,
batch_size=params['training']['batch_size'],
num_workers=8
)
loss = CombinedLoss(
[
GaussianVAEReconLoss(reduction='mean'),
KLDivergence(reduction='mean', std_is_log=False)
],
['+'],
[1, 32]
)
metrics = MetricCollection({
'MSE': TMW(MeanSquaredError(), ['x', 'reconstruction']),
})
if params['training']['pretrain']:
model = GaussianVAE.load_from_checkpoint(
checkpoint_path=params['paths']['pretrain_checkpoint'],
loss=loss,
lr=params['training']['learning_rate'],
train_metrics=metrics,
val_metrics=metrics,
std_is_log=False
)
else:
encoder = CausalCNNVEncoder(**params['encoder'])
decoder = CausalCNNVDecoder(**params['decoder'])
model = GaussianVAE(
encoder_class=encoder,
decoder_class=decoder,
loss=loss,
lr=params['training']['learning_rate'],
train_metrics=metrics,
val_metrics=metrics,
std_is_log=False
)
trainer = pl.Trainer(
max_epochs=params['training']['epochs'],
logger=neptune_logger,
log_every_n_steps=5,
gradient_clip_val=1,
gpus=1,
callbacks=[
ModelCheckpoint(
monitor='val_loss',
mode='min',
save_last=True,
dirpath=os.path.join(params['paths']['checkpoints'], neptune_logger.version),
filename='epoch={epoch}-step={step}-loss={val_loss:.2f}'
),
]
)
trainer.fit(model, train_loader, val_loader)
with open('train_factorecg_vae.yaml', "r") as stream:
params = yaml.safe_load(stream)
output = run_trainer(params)