[688072]: / examples / ae / train_ae.py

Download this file

220 lines (177 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.transforms import Compose
import pytorch_lightning as pl
from pytorch_lightning.loggers.neptune import NeptuneLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
from ecgxai.utils.dataset import UniversalECGDataset
from ecgxai.network.AE_encoder_decoder import AEDoubleResidualEncoder, DoubleResidualDecoder
from ecgxai.utils.loss import TW
from ecgxai.utils.transforms import ApplyGain, ToTensor, Resample
from ecgxai.systems.AE_system import AE
# Please note that this configuration requires median beat data which is not currently publicly available
params = {
"median_data_dir": "/median",
"one_mili_csv": "header_info.csv",
}
pl.seed_everything(0)
# Set Data transforms
train_transform = Compose([ToTensor(), ApplyGain(), Resample(500)])
test_transform = Compose([ToTensor(), ApplyGain(), Resample(500)])
# Get data and split in train and test
full_set_df = pd.read_csv(params['one_mili_csv'])
trainset_df, testset_df = train_test_split(full_set_df, test_size=0.1)
trainset = UniversalECGDataset(
'umcu',
params['median_data_dir'],
trainset_df,
transform=train_transform,
)
testset = UniversalECGDataset(
'umcu',
params['median_data_dir'],
testset_df,
transform=test_transform,
)
batchsize = 64
trainLoader = DataLoader(trainset, batch_size=batchsize, shuffle=True, num_workers=12)
testLoader = DataLoader(testset, batch_size=batchsize, shuffle=True, num_workers=8)
# Remember to properly configure your logger here
# You can change the neptune logger to any logger supported by pytorch lighting
neptune_logger = NeptuneLogger(
api_key=open("../neptune_token.txt", "r").read(),
project="%project%"
)
lr = 0.001
latent_dim = 32
in_sample_dim = 600
out_sample_dim = 600
sample_channels = 8
out_sample_channels = 8
enc_pre_block_1_out_channels = 16
enc_pre_block_1_kernel_size = 3
enc_pre_block_1_bn = True
enc_pre_block_1_dropout_rate = 0.0
enc_pre_block_1_act_func = None
enc_pre_block_2_out_channels = 32
enc_pre_block_2_kernel_size = 3
enc_pre_block2_act_func = None
enc_pre_block_2_dropout_rate = 0.1
enc_pre_block2_bn = True
enc_cnn_num_layers = 12
enc_cnn_kernel_size = 16
enc_cnn_dropout_rate = 0.1
enc_cnn_sub_sample_every = 4
enc_cnn_double_channel_every = 4
enc_cnn_act_func = nn.ReLU()
enc_cnn_bn = True
dec_post_block_1_out_channels = 8
dec_post_block_1_kernel_size = 3
dec_post_block_1_bn = True
dec_post_block_1_dropout_rate = 0.1
dec_post_block_1_act_func = None
dec_post_block_2_out_channels = 8
dec_post_block_2_kernel_size = 17
dec_post_block2_act_func = None
dec_post_block_2_dropout_rate = 0.1
dec_post_block2_bn = True
dec_cnn_num_layers = 3
dec_cnn_kernel_size = 3
dec_cnn_dropout_rate = 0.1
dec_cnn_sub_sample_every = 4
dec_cnn_double_channel_every = 4
dec_cnn_act_func = nn.ReLU()
dec_cnn_bn = True
hyperparameters = dict(
lr=lr,
latent_dim=latent_dim,
in_sample_dim=in_sample_dim,
out_sample_dim=out_sample_dim,
sample_channels=sample_channels,
out_sample_channels=out_sample_channels,
pre_block_1_out_channels=enc_pre_block_1_out_channels,
pre_block_1_kernel_size=enc_pre_block_1_kernel_size,
pre_block_1_bn=enc_pre_block_1_bn,
pre_block_1_dropout_rate=enc_pre_block_1_dropout_rate,
pre_block_1_act_func=enc_pre_block_1_act_func,
pre_block_2_out_channels=enc_pre_block_2_out_channels,
pre_block_2_kernel_size=enc_pre_block_2_kernel_size,
pre_block2_act_func=enc_pre_block2_act_func,
pre_block_2_dropout_rate=enc_pre_block_2_dropout_rate,
pre_block2_bn=enc_pre_block2_bn,
enc_cnn_num_layers=enc_cnn_num_layers,
enc_cnn_kernel_size=enc_cnn_kernel_size,
enc_cnn_dropout_rate=enc_cnn_dropout_rate,
enc_cnn_sub_sample_every=enc_cnn_sub_sample_every,
enc_cnn_double_channel_every=enc_cnn_double_channel_every,
enc_cnn_act_func=enc_cnn_act_func,
enc_cnn_bn=enc_cnn_bn
)
print(hyperparameters)
encoder = AEDoubleResidualEncoder(
latent_dim=latent_dim,
in_sample_dim=in_sample_dim,
out_sample_dim=out_sample_dim,
sample_channels=sample_channels,
out_sample_channels=out_sample_channels,
pre_block_1_out_channels=enc_pre_block_1_out_channels,
pre_block_1_kernel_size=enc_pre_block_1_kernel_size,
pre_block_1_bn=enc_pre_block_1_bn,
pre_block_1_dropout_rate=enc_pre_block_1_dropout_rate,
pre_block_1_act_funct=enc_pre_block_1_act_func,
pre_block_2_out_channels=enc_pre_block_2_out_channels,
pre_block_2_kernel_size=enc_pre_block_2_kernel_size,
pre_block2_act_funct=enc_pre_block2_act_func,
pre_block_2_dropout_rate=enc_pre_block_2_dropout_rate,
pre_block2_bn=enc_pre_block2_bn,
cnn_num_layers=enc_cnn_num_layers,
cnn_kernel_size=enc_cnn_kernel_size,
cnn_dropout_rate=enc_cnn_dropout_rate,
cnn_sub_sample_every=enc_cnn_sub_sample_every,
cnn_double_channel_every=enc_cnn_double_channel_every,
cnn_act_func=enc_cnn_act_func,
cnn_bn=enc_cnn_bn
)
decoder = DoubleResidualDecoder(
latent_dim=latent_dim,
in_sample_dim=in_sample_dim,
out_sample_dim=out_sample_dim,
sample_channels=sample_channels,
out_sample_channels=out_sample_channels,
post_block_1_in_channels=dec_post_block_1_out_channels,
post_block_1_kernel_size=dec_post_block_1_kernel_size,
post_block_1_bn=dec_post_block_1_bn,
post_block_1_dropout_rate=dec_post_block_1_dropout_rate,
post_block_1_act_func=dec_post_block_1_act_func,
post_block_2_in_channels=dec_post_block_2_out_channels,
post_block_2_kernel_size=dec_post_block_2_kernel_size,
post_block_2_act_func=dec_post_block2_act_func,
post_block_2_dropout_rate=dec_post_block_2_dropout_rate,
post_block_2_bn=dec_post_block2_bn,
cnn_num_layers=dec_cnn_num_layers,
cnn_kernel_size=dec_cnn_kernel_size,
cnn_dropout_rate=dec_cnn_dropout_rate,
cnn_sub_sample_every=dec_cnn_sub_sample_every,
cnn_double_channel_every=dec_cnn_double_channel_every,
cnn_act_func=dec_cnn_act_func,
cnn_bn=dec_cnn_bn
)
model = AE(encoder, decoder, lr=lr, loss=TW(torch.nn.MSELoss(reduction='mean'), input_args=['x', 'reconstruction']))
trainer = pl.Trainer(
logger=neptune_logger,
checkpoint_callback=False,
gradient_clip_val=10,
max_epochs=50,
gpus=1 if torch.cuda.is_available() else None,
callbacks=[
ModelCheckpoint(
save_last=True
),
],
)
trainer.logger.log_hyperparams(hyperparameters)
trainer.fit(model, trainLoader, testLoader)