[688072]: / examples / classification / binary_classification_reduced_ef.py

Download this file

110 lines (92 with data), 3.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import pytorch_lightning as pl
from pytorch_lightning.loggers.neptune import NeptuneLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from torchmetrics import MetricCollection, AUROC, AveragePrecision
import yaml
import pandas as pd
import os
from ecgxai.utils.dataset import UniversalECGDataset
from ecgxai.utils.transforms import ApplyGain, ToTensor, To12Lead, Resample
from ecgxai.utils.metrics import TMW
from ecgxai.systems.classification_system import ClassificationSystem
from ecgxai.network.causalcnn.encoder import CausalCNNVEncoder
from ecgxai.utils.loss import BinaryFocalLoss
def run_trainer(params):
pl.seed_everything(1234)
# don't forget to update this for your own logger
api_key = open("neptune_token.txt", "r").read()
neptune_logger = NeptuneLogger(
api_key=api_key,
project=params['training']['project_name'],
tags=params['training']['tags'],
source_files=['*.py', '*.json', '*.yaml', '../../ecgxai/**/*.py']
)
neptune_logger.experiment["model/hyper-parameters"] = params
# define transforms
transform = transforms.Compose([Resample(500), ApplyGain(), ToTensor(), To12Lead()])
# define datasets
traindf = pd.read_csv(params["paths"]["training_labels"])
trainset = UniversalECGDataset(
'umcu',
params["paths"]["raw_data"],
traindf,
transform=transform,
labels=params["training"]["label_names"]
)
train_loader = DataLoader(
trainset,
batch_size=params['training']['batch_size'],
num_workers=8,
shuffle=True
)
valdf = pd.read_csv(params["paths"]["validation_labels"])
valset = UniversalECGDataset(
'umcu',
params["paths"]["raw_data"],
valdf,
transform=transform,
labels=params["training"]["label_names"]
)
val_loader = DataLoader(
valset,
batch_size=params['training']['batch_size'],
num_workers=8
)
if params['training']['pretrain']:
model = ClassificationSystem.load_from_checkpoint(params['paths']['pretrain_checkpoint'])
else:
encoder = CausalCNNVEncoder(**params['network'])
metrics = MetricCollection({
'AUROC': TMW(AUROC(), ['y_hat', 'label'], int_args=['label']),
'AUPRC': TMW(AveragePrecision(), ['y_hat', 'label'])
})
model = ClassificationSystem(
lr=params['training']['learning_rate'],
model=encoder,
train_metrics=metrics,
val_metrics=metrics,
loss=BinaryFocalLoss(pos_weight=torch.tensor(params['training']['loss_weights'])),
mode="binary"
)
trainer = pl.Trainer(
max_epochs=params['training']['epochs'],
logger=neptune_logger,
log_every_n_steps=5,
gpus=1,
callbacks=[
ModelCheckpoint(
monitor='val_loss',
mode='min',
save_last=True,
dirpath=os.path.join(params['paths']['checkpoints'], neptune_logger.version),
filename='epoch={epoch}-step={step}-loss={val_loss:.2f}'
),
]
)
trainer.fit(model, train_loader, val_loader)
with open('binary_classification_reduced_ef.yaml', "r") as stream:
params = yaml.safe_load(stream)
output = run_trainer(params)