# -*- coding: utf-8 -*-
'''
@time: 2019/9/8 18:44
数据预处理:
1.构建label2index和index2label
2.划分数据集
@ author: javis
'''
import os, torch
import numpy as np
from config import config
# 保证每次划分数据一致
np.random.seed(41)
def name2index(path):
'''
把类别名称转换为index索引
:param path: 文件路径
:return: 字典
'''
list_name = []
for line in open(path, encoding='utf-8'):
list_name.append(line.strip())
name2indx = {name: i for i, name in enumerate(list_name)}
return name2indx
def split_data(file2idx, val_ratio=0.1):
'''
划分数据集,val需保证每类至少有1个样本
:param file2idx:
:param val_ratio:验证集占总数据的比例
:return:训练集,验证集路径
'''
data = set(os.listdir(config.train_dir))
val = set()
idx2file = [[] for _ in range(config.num_classes)]
for file, list_idx in file2idx.items():
for idx in list_idx:
idx2file[idx].append(file)
for item in idx2file:
# print(len(item), item)
num = int(len(item) * val_ratio)
val = val.union(item[:num])
train = data.difference(val)
return list(train), list(val)
def file2index(path, name2idx):
'''
获取文件id对应的标签类别
:param path:文件路径
:return:文件id对应label列表的字段
'''
file2index = dict()
for line in open(path, encoding='utf-8'):
arr = line.strip().split('\t')
id = arr[0]
labels = [name2idx[name] for name in arr[3:]]
# print(id, labels)
file2index[id] = labels
return file2index
def count_labels(data, file2idx):
'''
统计每个类别的样本数
:param data:
:param file2idx:
:return:
'''
cc = [0] * config.num_classes
for fp in data:
for i in file2idx[fp]:
cc[i] += 1
return np.array(cc)
def train(name2idx, idx2name):
file2idx = file2index(config.train_label, name2idx)
train, val = split_data(file2idx)
wc=count_labels(train,file2idx)
print(wc)
dd = {'train': train, 'val': val, "idx2name": idx2name, 'file2idx': file2idx,'wc':wc}
torch.save(dd, config.train_data)
if __name__ == '__main__':
pass
name2idx = name2index(config.arrythmia)
idx2name = {idx: name for name, idx in name2idx.items()}
train(name2idx, idx2name)