# -*- coding: utf-8 -*-
'''
@time: 2019/9/8 18:45
@ author: javis
'''
import os
class Config:
# for data_process.py
#root = r'D:\ECG'
root = r'data'
train_dir = os.path.join(root, 'hf_round1_train/train')
test_dir = os.path.join(root, 'hf_round1_testA/testA')
train_label = os.path.join(root, 'hf_round1_label.txt')
test_label = os.path.join(root, 'hf_round1_subA.txt')
arrythmia = os.path.join(root, 'hf_round1_arrythmia.txt')
train_data = os.path.join(root, 'train.pth')
# for train
#训练的模型名称
model_name = 'resnet34'
#在第几个epoch进行到下一个state,调整lr
stage_epoch = [32,64,128]
#训练时的batch大小
batch_size = 64
#label的类别数
num_classes = 55
#最大训练多少个epoch
max_epoch = 256
#目标的采样长度
target_point_num = 2048
#保存模型的文件夹
ckpt = 'ckpt'
#保存提交文件的文件夹
sub_dir = 'submit'
#初始的学习率
lr = 1e-3
#保存模型当前epoch的权重
current_w = 'current_w.pth'
#保存最佳的权重
best_w = 'best_w.pth'
# 学习率衰减 lr/=lr_decay
lr_decay = 10
#for test
temp_dir=os.path.join(root,'temp')
config = Config()