[22f4a9]: / code / utils / utils.py

Download this file

443 lines (374 with data), 17.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import os
import sys
import re
import glob
import pickle
import copy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import wfdb
import ast
from sklearn.metrics import fbeta_score, roc_auc_score, roc_curve, roc_curve, auc
from sklearn.preprocessing import StandardScaler, MultiLabelBinarizer
from matplotlib.axes._axes import _log as matplotlib_axes_logger
import warnings
# EVALUATION STUFF
def generate_results(idxs, y_true, y_pred, thresholds):
return evaluate_experiment(y_true[idxs], y_pred[idxs], thresholds)
def evaluate_experiment(y_true, y_pred, thresholds=None):
results = {}
if not thresholds is None:
# binary predictions
y_pred_binary = apply_thresholds(y_pred, thresholds)
# PhysioNet/CinC Challenges metrics
challenge_scores = challenge_metrics(y_true, y_pred_binary, beta1=2, beta2=2)
results['F_beta_macro'] = challenge_scores['F_beta_macro']
results['G_beta_macro'] = challenge_scores['G_beta_macro']
# label based metric
results['macro_auc'] = roc_auc_score(y_true, y_pred, average='macro')
df_result = pd.DataFrame(results, index=[0])
return df_result
def challenge_metrics(y_true, y_pred, beta1=2, beta2=2, class_weights=None, single=False):
f_beta = 0
g_beta = 0
if single: # if evaluating single class in case of threshold-optimization
sample_weights = np.ones(y_true.sum(axis=1).shape)
else:
sample_weights = y_true.sum(axis=1)
for classi in range(y_true.shape[1]):
y_truei, y_predi = y_true[:,classi], y_pred[:,classi]
TP, FP, TN, FN = 0.,0.,0.,0.
for i in range(len(y_predi)):
sample_weight = sample_weights[i]
if y_truei[i]==y_predi[i]==1:
TP += 1./sample_weight
if ((y_predi[i]==1) and (y_truei[i]!=y_predi[i])):
FP += 1./sample_weight
if y_truei[i]==y_predi[i]==0:
TN += 1./sample_weight
if ((y_predi[i]==0) and (y_truei[i]!=y_predi[i])):
FN += 1./sample_weight
f_beta_i = ((1+beta1**2)*TP)/((1+beta1**2)*TP + FP + (beta1**2)*FN)
g_beta_i = (TP)/(TP+FP+beta2*FN)
f_beta += f_beta_i
g_beta += g_beta_i
return {'F_beta_macro':f_beta/y_true.shape[1], 'G_beta_macro':g_beta/y_true.shape[1]}
def get_appropriate_bootstrap_samples(y_true, n_bootstraping_samples):
samples=[]
while True:
ridxs = np.random.randint(0, len(y_true), len(y_true))
if y_true[ridxs].sum(axis=0).min() != 0:
samples.append(ridxs)
if len(samples) == n_bootstraping_samples:
break
return samples
def find_optimal_cutoff_threshold(target, predicted):
"""
Find the optimal probability cutoff point for a classification model related to event rate
"""
fpr, tpr, threshold = roc_curve(target, predicted)
optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = threshold[optimal_idx]
return optimal_threshold
def find_optimal_cutoff_thresholds(y_true, y_pred):
return [find_optimal_cutoff_threshold(y_true[:,i], y_pred[:,i]) for i in range(y_true.shape[1])]
def find_optimal_cutoff_threshold_for_Gbeta(target, predicted, n_thresholds=100):
thresholds = np.linspace(0.00,1,n_thresholds)
scores = [challenge_metrics(target, predicted>t, single=True)['G_beta_macro'] for t in thresholds]
optimal_idx = np.argmax(scores)
return thresholds[optimal_idx]
def find_optimal_cutoff_thresholds_for_Gbeta(y_true, y_pred):
print("optimize thresholds with respect to G_beta")
return [find_optimal_cutoff_threshold_for_Gbeta(y_true[:,k][:,np.newaxis], y_pred[:,k][:,np.newaxis]) for k in tqdm(range(y_true.shape[1]))]
def apply_thresholds(preds, thresholds):
"""
apply class-wise thresholds to prediction score in order to get binary format.
BUT: if no score is above threshold, pick maximum. This is needed due to metric issues.
"""
tmp = []
for p in preds:
tmp_p = (p > thresholds).astype(int)
if np.sum(tmp_p) == 0:
tmp_p[np.argmax(p)] = 1
tmp.append(tmp_p)
tmp = np.array(tmp)
return tmp
# DATA PROCESSING STUFF
def load_dataset(path, sampling_rate, release=False):
if path.split('/')[-2] == 'ptbxl':
# load and convert annotation data
Y = pd.read_csv(path+'ptbxl_database.csv', index_col='ecg_id')
Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x))
# Load raw signal data
X = load_raw_data_ptbxl(Y, sampling_rate, path)
elif path.split('/')[-2] == 'ICBEB':
# load and convert annotation data
Y = pd.read_csv(path+'icbeb_database.csv', index_col='ecg_id')
Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x))
# Load raw signal data
X = load_raw_data_icbeb(Y, sampling_rate, path)
return X, Y
def load_raw_data_icbeb(df, sampling_rate, path):
if sampling_rate == 100:
if os.path.exists(path + 'raw100.npy'):
data = np.load(path+'raw100.npy', allow_pickle=True)
else:
data = [wfdb.rdsamp(path + 'records100/'+str(f)) for f in tqdm(df.index)]
data = np.array([signal for signal, meta in data])
pickle.dump(data, open(path+'raw100.npy', 'wb'), protocol=4)
elif sampling_rate == 500:
if os.path.exists(path + 'raw500.npy'):
data = np.load(path+'raw500.npy', allow_pickle=True)
else:
data = [wfdb.rdsamp(path + 'records500/'+str(f)) for f in tqdm(df.index)]
data = np.array([signal for signal, meta in data])
pickle.dump(data, open(path+'raw500.npy', 'wb'), protocol=4)
return data
def load_raw_data_ptbxl(df, sampling_rate, path):
if sampling_rate == 100:
if os.path.exists(path + 'raw100.npy'):
data = np.load(path+'raw100.npy', allow_pickle=True)
else:
data = [wfdb.rdsamp(path+f) for f in tqdm(df.filename_lr)]
data = np.array([signal for signal, meta in data])
pickle.dump(data, open(path+'raw100.npy', 'wb'), protocol=4)
elif sampling_rate == 500:
if os.path.exists(path + 'raw500.npy'):
data = np.load(path+'raw500.npy', allow_pickle=True)
else:
data = [wfdb.rdsamp(path+f) for f in tqdm(df.filename_hr)]
data = np.array([signal for signal, meta in data])
pickle.dump(data, open(path+'raw500.npy', 'wb'), protocol=4)
return data
def compute_label_aggregations(df, folder, ctype):
df['scp_codes_len'] = df.scp_codes.apply(lambda x: len(x))
aggregation_df = pd.read_csv(folder+'scp_statements.csv', index_col=0)
if ctype in ['diagnostic', 'subdiagnostic', 'superdiagnostic']:
def aggregate_all_diagnostic(y_dic):
tmp = []
for key in y_dic.keys():
if key in diag_agg_df.index:
tmp.append(key)
return list(set(tmp))
def aggregate_subdiagnostic(y_dic):
tmp = []
for key in y_dic.keys():
if key in diag_agg_df.index:
c = diag_agg_df.loc[key].diagnostic_subclass
if str(c) != 'nan':
tmp.append(c)
return list(set(tmp))
def aggregate_diagnostic(y_dic):
tmp = []
for key in y_dic.keys():
if key in diag_agg_df.index:
c = diag_agg_df.loc[key].diagnostic_class
if str(c) != 'nan':
tmp.append(c)
return list(set(tmp))
diag_agg_df = aggregation_df[aggregation_df.diagnostic == 1.0]
if ctype == 'diagnostic':
df['diagnostic'] = df.scp_codes.apply(aggregate_all_diagnostic)
df['diagnostic_len'] = df.diagnostic.apply(lambda x: len(x))
elif ctype == 'subdiagnostic':
df['subdiagnostic'] = df.scp_codes.apply(aggregate_subdiagnostic)
df['subdiagnostic_len'] = df.subdiagnostic.apply(lambda x: len(x))
elif ctype == 'superdiagnostic':
df['superdiagnostic'] = df.scp_codes.apply(aggregate_diagnostic)
df['superdiagnostic_len'] = df.superdiagnostic.apply(lambda x: len(x))
elif ctype == 'form':
form_agg_df = aggregation_df[aggregation_df.form == 1.0]
def aggregate_form(y_dic):
tmp = []
for key in y_dic.keys():
if key in form_agg_df.index:
c = key
if str(c) != 'nan':
tmp.append(c)
return list(set(tmp))
df['form'] = df.scp_codes.apply(aggregate_form)
df['form_len'] = df.form.apply(lambda x: len(x))
elif ctype == 'rhythm':
rhythm_agg_df = aggregation_df[aggregation_df.rhythm == 1.0]
def aggregate_rhythm(y_dic):
tmp = []
for key in y_dic.keys():
if key in rhythm_agg_df.index:
c = key
if str(c) != 'nan':
tmp.append(c)
return list(set(tmp))
df['rhythm'] = df.scp_codes.apply(aggregate_rhythm)
df['rhythm_len'] = df.rhythm.apply(lambda x: len(x))
elif ctype == 'all':
df['all_scp'] = df.scp_codes.apply(lambda x: list(set(x.keys())))
return df
def select_data(XX,YY, ctype, min_samples, outputfolder):
# convert multilabel to multi-hot
mlb = MultiLabelBinarizer()
if ctype == 'diagnostic':
X = XX[YY.diagnostic_len > 0]
Y = YY[YY.diagnostic_len > 0]
mlb.fit(Y.diagnostic.values)
y = mlb.transform(Y.diagnostic.values)
elif ctype == 'subdiagnostic':
counts = pd.Series(np.concatenate(YY.subdiagnostic.values)).value_counts()
counts = counts[counts > min_samples]
YY.subdiagnostic = YY.subdiagnostic.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
YY['subdiagnostic_len'] = YY.subdiagnostic.apply(lambda x: len(x))
X = XX[YY.subdiagnostic_len > 0]
Y = YY[YY.subdiagnostic_len > 0]
mlb.fit(Y.subdiagnostic.values)
y = mlb.transform(Y.subdiagnostic.values)
elif ctype == 'superdiagnostic':
counts = pd.Series(np.concatenate(YY.superdiagnostic.values)).value_counts()
counts = counts[counts > min_samples]
YY.superdiagnostic = YY.superdiagnostic.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
YY['superdiagnostic_len'] = YY.superdiagnostic.apply(lambda x: len(x))
X = XX[YY.superdiagnostic_len > 0]
Y = YY[YY.superdiagnostic_len > 0]
mlb.fit(Y.superdiagnostic.values)
y = mlb.transform(Y.superdiagnostic.values)
elif ctype == 'form':
# filter
counts = pd.Series(np.concatenate(YY.form.values)).value_counts()
counts = counts[counts > min_samples]
YY.form = YY.form.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
YY['form_len'] = YY.form.apply(lambda x: len(x))
# select
X = XX[YY.form_len > 0]
Y = YY[YY.form_len > 0]
mlb.fit(Y.form.values)
y = mlb.transform(Y.form.values)
elif ctype == 'rhythm':
# filter
counts = pd.Series(np.concatenate(YY.rhythm.values)).value_counts()
counts = counts[counts > min_samples]
YY.rhythm = YY.rhythm.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
YY['rhythm_len'] = YY.rhythm.apply(lambda x: len(x))
# select
X = XX[YY.rhythm_len > 0]
Y = YY[YY.rhythm_len > 0]
mlb.fit(Y.rhythm.values)
y = mlb.transform(Y.rhythm.values)
elif ctype == 'all':
# filter
counts = pd.Series(np.concatenate(YY.all_scp.values)).value_counts()
counts = counts[counts > min_samples]
YY.all_scp = YY.all_scp.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
YY['all_scp_len'] = YY.all_scp.apply(lambda x: len(x))
# select
X = XX[YY.all_scp_len > 0]
Y = YY[YY.all_scp_len > 0]
mlb.fit(Y.all_scp.values)
y = mlb.transform(Y.all_scp.values)
else:
pass
# save LabelBinarizer
with open(outputfolder+'mlb.pkl', 'wb') as tokenizer:
pickle.dump(mlb, tokenizer)
return X, Y, y, mlb
def preprocess_signals(X_train, X_validation, X_test, outputfolder):
# Standardize data such that mean 0 and variance 1
ss = StandardScaler()
ss.fit(np.vstack(X_train).flatten()[:,np.newaxis].astype(float))
# Save Standardizer data
with open(outputfolder+'standard_scaler.pkl', 'wb') as ss_file:
pickle.dump(ss, ss_file)
return apply_standardizer(X_train, ss), apply_standardizer(X_validation, ss), apply_standardizer(X_test, ss)
def apply_standardizer(X, ss):
X_tmp = []
for x in X:
x_shape = x.shape
X_tmp.append(ss.transform(x.flatten()[:,np.newaxis]).reshape(x_shape))
X_tmp = np.array(X_tmp)
return X_tmp
# DOCUMENTATION STUFF
def generate_ptbxl_summary_table(selection=None, folder='../output/'):
exps = ['exp0', 'exp1', 'exp1.1', 'exp1.1.1', 'exp2', 'exp3']
metric1 = 'macro_auc'
# get models
models = {}
for i, exp in enumerate(exps):
if selection is None:
exp_models = [m.split('/')[-1] for m in glob.glob(folder+str(exp)+'/models/*')]
else:
exp_models = selection
if i == 0:
models = set(exp_models)
else:
models = models.union(set(exp_models))
results_dic = {'Method':[],
'exp0_AUC':[],
'exp1_AUC':[],
'exp1.1_AUC':[],
'exp1.1.1_AUC':[],
'exp2_AUC':[],
'exp3_AUC':[]
}
for m in models:
results_dic['Method'].append(m)
for e in exps:
try:
me_res = pd.read_csv(folder+str(e)+'/models/'+str(m)+'/results/te_results.csv', index_col=0)
mean1 = me_res.loc['point'][metric1]
unc1 = max(me_res.loc['upper'][metric1]-me_res.loc['point'][metric1], me_res.loc['point'][metric1]-me_res.loc['lower'][metric1])
results_dic[e+'_AUC'].append("%.3f(%.2d)" %(np.round(mean1,3), int(unc1*1000)))
except FileNotFoundError:
results_dic[e+'_AUC'].append("--")
df = pd.DataFrame(results_dic)
df_index = df[df.Method.isin(['naive', 'ensemble'])]
df_rest = df[~df.Method.isin(['naive', 'ensemble'])]
df = pd.concat([df_rest, df_index])
df.to_csv(folder+'results_ptbxl.csv')
titles = [
'### 1. PTB-XL: all statements',
'### 2. PTB-XL: diagnostic statements',
'### 3. PTB-XL: Diagnostic subclasses',
'### 4. PTB-XL: Diagnostic superclasses',
'### 5. PTB-XL: Form statements',
'### 6. PTB-XL: Rhythm statements'
]
# helper output function for markdown tables
our_work = 'https://arxiv.org/abs/2004.13701'
our_repo = 'https://github.com/helme/ecg_ptbxl_benchmarking/'
md_source = ''
for i, e in enumerate(exps):
md_source += '\n '+titles[i]+' \n \n'
md_source += '| Model | AUC ↓ | paper/source | code | \n'
md_source += '|---:|:---|:---|:---| \n'
for row in df_rest[['Method', e+'_AUC']].sort_values(e+'_AUC', ascending=False).values:
md_source += '| ' + row[0].replace('fastai_', '') + ' | ' + row[1] + ' | [our work]('+our_work+') | [this repo]('+our_repo+')| \n'
print(md_source)
def ICBEBE_table(selection=None, folder='../output/'):
cols = ['macro_auc', 'F_beta_macro', 'G_beta_macro']
if selection is None:
models = [m.split('/')[-1].split('_pretrained')[0] for m in glob.glob(folder+'exp_ICBEB/models/*')]
else:
models = []
for s in selection:
#if s != 'Wavelet+NN':
models.append(s)
data = []
for model in models:
me_res = pd.read_csv(folder+'exp_ICBEB/models/'+model+'/results/te_results.csv', index_col=0)
mcol=[]
for col in cols:
mean = me_res.ix['point'][col]
unc = max(me_res.ix['upper'][col]-me_res.ix['point'][col], me_res.ix['point'][col]-me_res.ix['lower'][col])
mcol.append("%.3f(%.2d)" %(np.round(mean,3), int(unc*1000)))
data.append(mcol)
data = np.array(data)
df = pd.DataFrame(data, columns=cols, index=models)
df.to_csv(folder+'results_icbeb.csv')
df_rest = df[~df.index.isin(['naive', 'ensemble'])]
df_rest = df_rest.sort_values('macro_auc', ascending=False)
our_work = 'https://arxiv.org/abs/2004.13701'
our_repo = 'https://github.com/helme/ecg_ptbxl_benchmarking/'
md_source = '| Model | AUC ↓ | F_beta=2 | G_beta=2 | paper/source | code | \n'
md_source += '|---:|:---|:---|:---|:---|:---| \n'
for i, row in enumerate(df_rest[cols].values):
md_source += '| ' + df_rest.index[i].replace('fastai_', '') + ' | ' + row[0] + ' | ' + row[1] + ' | ' + row[2] + ' | [our work]('+our_work+') | [this repo]('+our_repo+')| \n'
print(md_source)