--- a +++ b/examples/cinc17/entry/evaler.py @@ -0,0 +1,32 @@ +import json +import keras +import numpy as np +import scipy.io as sio +import scipy.stats as sst + +import load +import network +import util + +def predict(record): + ecg = load.load_ecg(record +".mat") + preproc = util.load(".") + x = preproc.process_x([ecg]) + + params = json.load(open("config.json")) + params.update({ + "compile" : False, + "input_shape": [None, 1], + "num_categories": len(preproc.classes) + }) + + model = network.build_network(**params) + model.load_weights('model.hdf5') + + probs = model.predict(x) + prediction = sst.mode(np.argmax(probs, axis=2).squeeze())[0][0] + return preproc.int_to_class[prediction] + +if __name__ == '__main__': + import sys + print predict(sys.argv[1])