[134fd7]: / online_evaluator.py

Download this file

236 lines (213 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import math
import pdb
import pytorch_lightning as pl
import torch
from pytorch_lightning.metrics.functional import accuracy
from torch.nn import functional as F
from clinical_ts.eval_utils_cafa import eval_scores, eval_scores_bootstrap
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import normalize
from torch.nn.modules.linear import Linear
from copy import deepcopy
from clinical_ts.create_logger import create_logger
from tqdm import tqdm
logger = create_logger(__name__)
class SSLOnlineEvaluator(pl.Callback): # pragma: no-cover
def __init__(self, drop_p: float = 0.0, hidden_dim: int = 1024, z_dim: int = None, num_classes: int = None, lin_eval_epochs=5, eval_every=10, mode="linear_evaluation", discriminative=True, verbose=False):
"""
Attaches a MLP for finetuning using the standard self-supervised protocol.
Example::
from pl_bolts.callbacks.self_supervised import SSLOnlineEvaluator
# your model must have 2 attributes
model = Model()
model.z_dim = ... # the representation dim
model.num_classes = ... # the num of classes in the model
Args:
drop_p: (0.2) dropout probability
hidden_dim: (1024) the hidden dimension for the finetune MLP
"""
super().__init__()
self.hidden_dim = hidden_dim
self.drop_p = drop_p
self.optimizer = None
self.z_dim = z_dim
self.num_classes = num_classes
self.macro = 0
self.best_macro = 0
self.lin_eval_epochs = lin_eval_epochs
self.eval_every = eval_every
self.discriminative = discriminative
self.verbose = verbose
if mode == "linear_evaluation":
self.mode = mode
elif mode == "fine_tuning":
self.mode = mode
else:
raise("mode " + str(mode) + " unknown")
def get_representations(self, features, x):
"""
Override this to customize for the particular model
Args:
pl_module:
x:
"""
if len(x) == 2 and isinstance(x, list):
x = x[0]
representations = features(x)
if (isinstance(representations, list) or isinstance(representations, tuple)):
representations = representations[0]
representations = representations.reshape(representations.size(0), -1)
return representations
def to_device(self, batch, device):
x, y = batch
return x, y
def put_on_device(self, batch, device, new_type):
x, y = batch
x = x.type(new_type).to(device)
y = y.type(new_type).to(device)
return x, y
def on_sanity_check_start(self, trainer, pl_module):
self.val_ds_size = len(trainer.val_dataloaders[0].dataset)
self.last_batch_id = len(trainer.val_dataloaders[0])-1
def on_sanity_check_end(self, trainer, pl_module):
self.macro = 0
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
#def on_validation_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
# reset mlp after each epoch to get fresh linear evaluation values at every epoch
if pl_module.epoch % self.eval_every == 0 and batch_idx == 0 and dataloader_idx == 0:
new_type, device, valid_loader, features, linear_head, optimizer = self.online_train_setup(
pl_module, trainer)
loss_per_epoch = []
macro_per_epoch = []
linear_head2 = deepcopy(linear_head)
for epoch in tqdm(range(self.lin_eval_epochs)):
total_loss_one_epoch, linear_head = self.train_one_epoch(
valid_loader, features, linear_head, optimizer, device, new_type)
if self.verbose:
loss_per_epoch.append(total_loss_one_epoch)
macro, total_loss = self.eval_model(
trainer, features, linear_head, device, new_type)
macro_per_epoch.append(macro)
logger.info("macro at epoch "+str(epoch) + ": " + str(macro))
logger.info("train loss at epoch "+str(epoch) + ": " + str(total_loss_one_epoch))
logger.info("test loss at epoch "+str(epoch) + ": " + str(total_loss))
macro, total_loss = self.eval_model(trainer, features, linear_head, device, new_type)
self.log_values(trainer, pl_module, macro, total_loss)
def online_train_setup(self, pl_module, trainer):
new_type = pl_module.type()
device = pl_module.get_device()
valid_loader = trainer.val_dataloaders[1]
if self.mode == "linear_evaluation":
lr = 8e-3 *(valid_loader.batch_size/256)
else:
lr = 8e-5 *(valid_loader.batch_size/256)
# print("using lr:", lr)
# print("using batch size: ", valid_loader.batch_size)
wd = 1e-1
features = deepcopy(pl_module.get_model())
linear_head = Linear(
features.l1.in_features, self.num_classes, bias=True).type(new_type)
if self.mode == "linear_evaluation":
optimizer = torch.optim.AdamW(
linear_head.parameters(), lr=lr, weight_decay=wd)
else:
if not self.discriminative:
optimizer = torch.optim.AdamW([
{"params": features.parameters()}, {"params": linear_head.parameters()}], lr=lr, weight_decay=wd)
else:
lr = (8e-3*(valid_loader.batch_size/256))
param_dict = dict(features.named_parameters())
keys = param_dict.keys()
weight_layer_nrs = set()
for key in keys:
if "features" in key:
# parameter names have the form features.x
weight_layer_nrs.add(key[9])
weight_layer_nrs = sorted(weight_layer_nrs, reverse=True)
features_groups = []
while len(weight_layer_nrs) > 0:
if len(weight_layer_nrs) > 1:
features_groups.append(list(filter(
lambda x: "features." + weight_layer_nrs[0] in x or "features." + weight_layer_nrs[1] in x, keys)))
del weight_layer_nrs[:2]
else:
features_groups.append(
list(filter(lambda x: "features." + weight_layer_nrs[0] in x, keys)))
del weight_layer_nrs[0]
# linears = list(filter(lambda x: "l" in x, keys)) # filter linear layers
# groups = [linears] + features_groups
optimizer_param_list = []
tmp_lr = lr
optimizer_param_list.append(
{"params": linear_head.parameters(), "lr": tmp_lr})
tmp_lr /= 4
for layers in features_groups:
layer_params = [param_dict[param_name]
for param_name in layers]
optimizer_param_list.append(
{"params": layer_params, "lr": tmp_lr})
tmp_lr /= 4
optimizer = torch.optim.AdamW(optimizer_param_list, lr=lr, weight_decay=wd)
return new_type, device, valid_loader, features, linear_head, optimizer
def train_one_epoch(self, valid_loader, features, linear_head, optimizer, device, new_type):
linear_head.train()
if self.mode == "linear_evaluation":
# we dont want to update things like batchnorm statistics in linear evaluation
features.eval()
else:
features.train()
total_loss_one_epoch = 0
for cur_batch in valid_loader:
x, y = self.put_on_device(
cur_batch, device, new_type)
if self.mode == "linear_evaluation":
with torch.no_grad():
representations = self.get_representations(
features, x)
else:
with torch.enable_grad():
representations = self.get_representations(
features, x)
# forward pass
with torch.enable_grad():
mlp_preds = linear_head(representations)
mlp_loss = F.binary_cross_entropy_with_logits(
mlp_preds, y)
# update finetune weights
optimizer.zero_grad()
mlp_loss.backward()
optimizer.step()
total_loss_one_epoch += mlp_loss.item()
return total_loss_one_epoch, linear_head
def eval_model(self, trainer, features, linear_head, device, new_type):
features.eval()
preds = []
labels = []
total_loss = 0
test_loader = trainer.val_dataloaders[2]
for cur_batch in test_loader:
x, y = self.put_on_device(
cur_batch, device, new_type)
with torch.no_grad():
representations = self.get_representations(features, x)
mlp_preds = torch.sigmoid(
linear_head(representations))
preds.append(mlp_preds.cpu())
labels.append(y.cpu())
total_loss += F.binary_cross_entropy_with_logits(
mlp_preds, y)
preds = torch.cat(preds).numpy()
labels = torch.cat(labels).numpy()
macro = roc_auc_score(labels, preds)
return macro, total_loss
def log_values(self, trainer, pl_module, macro, total_loss):
self.best_macro = macro if macro > self.best_macro else self.best_macro
if self.mode == "linear_evaluation":
log_key = "le"
else:
log_key = "ft"
metrics = {log_key + '_mlp/loss': total_loss,
log_key + '_mlp/macro': macro, log_key + '_mlp/best_macro': self.best_macro}
pl_module.logger.log_metrics(metrics, step=trainer.global_step)
def __str__(self):
return self.mode+"_callback"