import os
from typing import Optional, Sequence
from warnings import warn
import torch
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, random_split
from clinical_ts.simclr_dataset_wrapper import SimCLRDataSetWrapper
class ECGDataModule(LightningDataModule):
name = 'ecg_dataset'
extra_args = {}
def __init__(
self,
config,
transformations_str,
t_params,
data_dir: str = None,
val_split: int = 5000,
num_workers: int = 16,
batch_size: int = 32,
seed: int = 42,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.dims = (12, 250)
# self.val_split = val_split
self.num_workers = num_workers
self.batch_size = batch_size
self.seed = seed
self.data_dir = data_dir if data_dir is not None else os.getcwd()
# self.num_samples = 60000 - val_split
# self.DATASET = SimCLRDataSetWrapper(
# config['eval_batch_size'], **config['eval_dataset'])
# self.train_loader, self.valid_loader = self.DATASET.get_data_loaders()
self.config = config
self.transformations_str = transformations_str
self.t_params = t_params
self.set_params()
def set_params(self):
dataset = SimCLRDataSetWrapper(
self.config['batch_size'], **self.config['dataset'], transformations=self.transformations_str, t_params=self.t_params)
train_loader, valid_loader = dataset.get_data_loaders()
self.num_samples = dataset.train_ds_size
self.transformations = dataset.transformations
@property
def num_classes(self):
"""
Return:
10
"""
return 5
def prepare_data(self):
pass
def train_dataloader(self):
dataset = SimCLRDataSetWrapper(
self.config['batch_size'], **self.config['dataset'], transformations=self.transformations_str, t_params=self.t_params)
train_loader, _ = dataset.get_data_loaders()
return train_loader
def val_dataloader(self):
dataset = SimCLRDataSetWrapper(
self.config['eval_batch_size'], **self.config['eval_dataset'], transformations=self.transformations_str, t_params=self.t_params)
_, valid_loader_self = dataset.get_data_loaders()
dataset = SimCLRDataSetWrapper(
self.config['eval_batch_size'], **self.config['eval_dataset'], transformations=self.transformations_str, t_params=self.t_params, mode="linear_evaluation")
valid_loader_sup, test_loader_sup = dataset.get_data_loaders()
# return valid_loader
return [valid_loader_self, valid_loader_sup, test_loader_sup]
def test_dataloader(self):
return self.valid_loader
def default_transforms(self):
pass